Deer Population

Audrey Holloman, Sydney Singleton, Emily Mitchell

Introduction

- NC deer population is about 1,000,000
- Current population can be modeled by:

$$N_{t+1} = N_t + 0.12(1 - \frac{N_t}{1,200,000})N_t$$

- growth rate: 12% carrying capacity: 1,200,000
- Population is nearing its carrying capacity

Introduction Continued

• If the state introduces a predator, populations can be modeled by:

$$N_{t+1} = N_t + 0.12(1 - \frac{N_t}{1,200,000})N_t - \frac{cN_tP_t}{a+N_t}$$
$$P_{t+1} = P_t + \frac{bN_tP_t}{a+N_t} - mP_t$$

- a, b, and c can be values larger than 1
- m must be a value between 0 and 1 because it's a mortality <u>rate</u>

Excel

	Α	В	С		D		E	F	G		Н	
t (Time)		N (Deer)	P (Predator)			а		b c			m	
	0	1000000	1000				0.1	0.1		0.1		0.1
	1	1019900	999.99999									
	2	1038168.4	999.99998		Deer vs Predator							
	3	1054869.24	999.999971		2000000							
	4	1070078.64	999.999961				-					
	5	1083881.25	999.999952		1 1 17 25 33 49 49							
	6	1096367.14	999.999943			4469668	86 6					
	7	1107629.11	999.999933			— N (Deer)	P (Predator)			
	8	1117760.38	999.999924									

 $f_x = B2+(0.12*(1-(B2/1200000))*B2)-(G2*B2*C2/(E2+B2))$

 f_x =C2+(\$F\$2*B2*C2/(\$E\$2+B2))-(\$H\$2*C2)

- N(0)=1,000,000
- 100-year time frame

Population Goes Extinct

Cycling Population

Population Kept Under 700,000 Deer

Stochastic Deer Growth Rate Changes

Change growth rate to equally likely values: Hi = 0.34, Mid = 0.12 (the same), Lo = -0.1

