Laguerre Polynomials

Audrey Holloman

Overview

- Named after Edmond Laguerre (French Mathematician)
- These polynomials are the solution of Laguerre's equation

•
$$x \frac{d^2 y}{dx^2} + (1-x) \frac{dy}{dx} + ny = 0$$
, *n* being a positive integer

• Used to calculate numerically in Gaussian quadrature

•
$$\int_0^\infty f(x)e^{-x}dx$$

- Have a wide range of applications in quantum mechanics
 - Radial part of the solution of the Schrödinger equation for a one-electron atom
 - Used to describe the static Wigner functions of oscillator systems in phase space

Solution

- Use $y = \sum_{m=0}^{\infty} c_m x^{k+m}$, $c_0 \neq 0$ (Frobenius method) to solve Laguerre's equation
- Differentiate the summation above to get $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and substitute them into Laguerre's equation
 - $\sum_{m=0}^{\infty} c_m (k+m)^2 x^{k+m-1} \sum_{m=0}^{\infty} c_m (k+m-n) x^{k+m} = 0$
- Equate the coefficient of x^{k+m-1} to zero

•
$$c_m = \frac{(k+m-1-n)}{(k+m)^2} c_{m-1}$$

• Consider the solution $(y)_{k=0}$

•
$$y = \sum_{m=0}^{\infty} c_m x^m$$
, where $c_m = \frac{(m-1-n)}{m^2} c_{m-1}$ $(k=0)$

Solution Continued

- Substitute m = 1, 2, 3, ..., r to get c_r • $c_r = (-1)^r \frac{n(n-1)...(n-r+1)}{(r!)^2} c_0$ for $r \le n$ and $c_{n+1} = c_{n+2} = c_{n+3} = \cdots = 0$
- Substitute this into the last summation

•
$$y = c_0 \sum_{r=0}^n (-1)^r \frac{n!}{(n-r)!(r!)^2} x^r$$

• Taking $c_0 = 1$, the solution is defined as the Laguerre polynomial of order n

•
$$L_n(x) = \sum_{r=0}^n (-1)^r \frac{n!}{(n-r)!(r!)^2} x^r$$

• The abscissas for quadrature order n are given by the roots of the Laguerre polynomials $L_n(\boldsymbol{x})$

Polynomials

• Use the solution to Laguerre's equation (i.e. $L_n(x)$) to find a few Laguerre polynomials

•
$$L_0(x) = (-1)^0 \frac{0!}{(0-0)!(0!)^2} x^0 = 1$$

• $L_1(x) = (-1)^0 \frac{1!}{(1-0)!(0!)^2} x^0 + (-1)^1 \frac{1!}{(1-1)!(1!)^2} x^1 = 1 - x$

n	$L_n(x)$
0	1
1	1-x
2	$\frac{1}{2}(x^2 - 4x + 2)$
3	$\frac{1}{6}(-x^3 + 9x^2 - 18x + 6)$

Gauss-Laguerre Quadrature

- These Laguerre polynomials form a set of polynomials with the weight function $w(x) = e^{-x}$. The quadrature rule approximates integrals of the form $\int_0^\infty f(x)e^{-x}dx$.
- This corresponds to Gauss-Laguerre Quadrature

•
$$\int_0^\infty e^{-x} f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$$

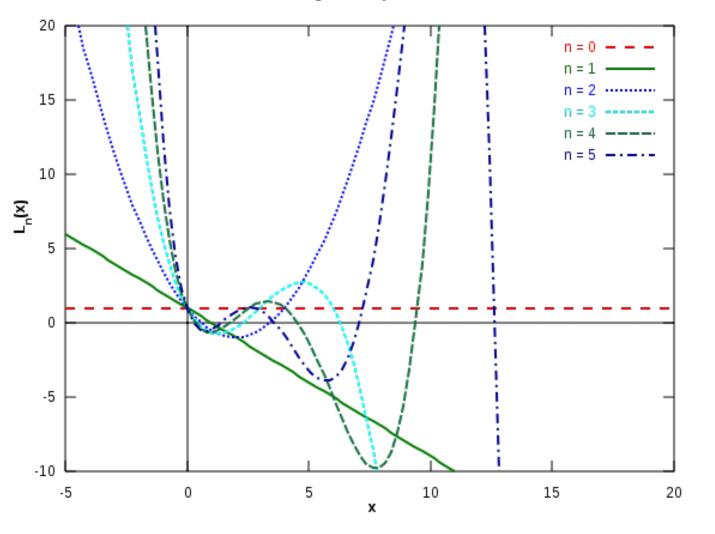
- <u>Nodes</u>: x_i : the *i*-th zeros of $L_n(x)$
- <u>Weights:</u> $w_i = \frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}$
- Since the domain of integration (0,∞) is infinite, the nodes get larger and then the corresponding weights decay rapidly

Applying Gauss-Laguerre

- <u>Example with 2 nodes/weights (method of undetermined</u> <u>coefficients)</u>:
- f(x) = 1: $\int_0^\infty 1e^{-x} dx = 1 \approx 1 \cdot w_1 + 1 \cdot w_2$
- f(x) = x: $\int_0^\infty x e^{-x} dx = 1 \approx x_1 \cdot w_1 + x_2 \cdot w_2$
- $f(x) = x^2$: $\int_0^\infty x^2 e^{-x} dx = 2 \approx x_1^2 \cdot w_1 + x_2^2 \cdot w_2$
- $f(x) = x^3$: $\int_0^\infty x^3 e^{-x} dx = 6 \approx x_1^3 \cdot w_1 + x_2^3 \cdot w_2$
- Solution: $x_1 = 2 \sqrt{2}$, $x_2 = 2 + \sqrt{2}$, $w_1 = \frac{2 + \sqrt{2}}{4}$, $w_2 = \frac{2 \sqrt{2}}{4}$

Laguerre Polynomial Graph

Laguerre Polynomials



This figure shows a graph of the different Laguerre Polynomials with respect to different *n* values. You can see their corresponding roots/nodes which are, x_i : the i-th zeros of $L_n(x)$.