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Chapter 1

Prerequisites

This material is from the DataCamp course Multiple and Logistic Regression by Ben Baumer. Before using
this material, the reader should have completed and be comfortable with the material in the DataCamp
module Correlation and Regression.

Reminder to self: each *.Rmd file contains one and only one chapter, and a chapter is defined by the first-level
heading #.
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Chapter 2

Parallel Slopes

In this chapter you’ll learn about the class of linear models called “parallel slopes models.” These include
one numeric and one categorical explanatory variable.

2.1 Fitting a parallel slopes model

We use the lm() function to fit linear models to data. In this case, we want to understand how the price
of MarioKart games sold at auction varies as a function of not only the number of wheels included in the
package, but also whether the item is new or used. Obviously, it is expected that you might have to pay a
premium to buy these new. But how much is that premium? Can we estimate its value after controlling for
the number of wheels?

We will fit a parallel slopes model using lm(). In addition to the data argument, lm() needs to know which
variables you want to include in your regression model, and how you want to include them. It accomplishes
this using a formula argument. A simple linear regression formula looks like y ~ x, where y is the name
of the response variable, and x is the name of the explanatory variable. Here, we will simply extend this
formula to include multiple explanatory variables. A parallel slopes model has the form y ~ x + z, where
z is a categorical explanatory variable, and x is a numerical explanatory variable.

The output from lm() is a model object, which when printed, will show the fitted coefficients.

Exercise

• The dataset marioKart is already loaded for you. Explore the data using glimpse() or str().
library(openintro)
data(marioKart)
glimpse(marioKart)

Observations: 143
Variables: 12
$ ID <dbl> 150377422259, 260483376854, 320432342985, 280405224...
$ duration <int> 3, 7, 3, 3, 1, 3, 1, 1, 3, 7, 1, 1, 1, 1, 7, 7, 3, ...
$ nBids <int> 20, 13, 16, 18, 20, 19, 13, 15, 29, 8, 15, 15, 13, ...
$ cond <fct> new, used, new, new, new, new, used, new, used, use...
$ startPr <dbl> 0.99, 0.99, 0.99, 0.99, 0.01, 0.99, 0.01, 1.00, 0.9...

7



8 CHAPTER 2. PARALLEL SLOPES

$ shipPr <dbl> 4.00, 3.99, 3.50, 0.00, 0.00, 4.00, 0.00, 2.99, 4.0...
$ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 45.00, 37.02, 53...
$ shipSp <fct> standard, firstClass, firstClass, standard, media, ...
$ sellerRate <int> 1580, 365, 998, 7, 820, 270144, 7284, 4858, 27, 201...
$ stockPhoto <fct> yes, yes, no, yes, yes, yes, yes, yes, yes, no, yes...
$ wheels <int> 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, 2, 2, 1, 0, 1, ...
$ title <fct> "~~ Wii MARIO KART &amp; WHEEL ~ NINTENDO Wii ~ BRA...
# Or
# str(marioKart)
# Data munging to agree with DataCamp mario_kart
mario_kart <- marioKart %>%
filter(totalPr < 100)

str(mario_kart)

'data.frame': 141 obs. of 12 variables:
$ ID : num 1.5e+11 2.6e+11 3.2e+11 2.8e+11 1.7e+11 ...
$ duration : int 3 7 3 3 1 3 1 1 3 7 ...
$ nBids : int 20 13 16 18 20 19 13 15 29 8 ...
$ cond : Factor w/ 2 levels "new","used": 1 2 1 1 1 1 2 1 2 2 ...
$ startPr : num 0.99 0.99 0.99 0.99 0.01 ...
$ shipPr : num 4 3.99 3.5 0 0 4 0 2.99 4 4 ...
$ totalPr : num 51.5 37 45.5 44 71 ...
$ shipSp : Factor w/ 8 levels "firstClass","media",..: 6 1 1 6 2 6 6 8 5 1 ...
$ sellerRate: int 1580 365 998 7 820 270144 7284 4858 27 201 ...
$ stockPhoto: Factor w/ 2 levels "no","yes": 2 2 1 2 2 2 2 2 2 1 ...
$ wheels : int 1 1 1 1 2 0 0 2 1 1 ...
$ title : Factor w/ 80 levels " Mario Kart Wii with Wii Wheel for Wii (New)",..: 80 60 22 7 4 19 34 5 79 70 ...
save(mario_kart,file = "./Data/mario_kart.RData")

• Use lm() to fit a parallel slopes model for total price as a function of the number of wheels and the
condition of the item. Use the argument data to specify the dataset you’re using.

# fit parallel slopes
lm(totalPr ~ wheels + cond, data = mario_kart)

Call:
lm(formula = totalPr ~ wheels + cond, data = mario_kart)

Coefficients:
(Intercept) wheels condused

42.370 7.233 -5.585

Reasoning about two intercepts

The marioKart data contains several other variables. The totalPr, startPr, and shipPr variables are
numeric, while the cond and stockPhoto variables are categorical.

Which formula will result in a parallel slopes model?

• totalPr ~ startPr + shipPr

• cond ~ startPr + stockPhoto
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• totalPr ~ shipPr + stockPhoto

• totalPr ~ cond

2.2 Using geom_line() and augment()

Parallel slopes models are so-named because we can visualize these models in the data space as not one line,
but two parallel lines. To do this, we’ll draw two things:

• a scatterplot showing the data, with color separating the points into groups

• a line for each value of the categorical variable

Our plotting strategy is to compute the fitted values, plot these, and connect the points to form a line. The
augment() function from the broom package provides an easy way to add the fitted values to our data frame,
and the geom_line() function can then use that data frame to plot the points and connect them.

Note that this approach has the added benefit of automatically coloring the lines appropriately to match the
data.

You already know how to use ggplot() and geom_point() to make the scatterplot. The only twist is that
now you’ll pass your augment()-ed model as the data argument in your ggplot() call. When you add your
geom_line(), instead of letting the y aesthetic inherit its values from the ggplot() call, you can set it to
the .fitted column of the augment()-ed model. This has the advantage of automatically coloring the lines
for you.

Exercise

The parallel slopes model mod relating total price to the number of wheels and condition is already in your
workspace.
mod <- lm(formula = totalPr ~ wheels + cond, data = mario_kart)

• augment() the model mod and explore the returned data frame using glimpse(). Notice the new
variables that have been created.

library(broom)
augmented_mod <- augment(mod)
glimpse(augmented_mod)

Observations: 141
Variables: 10
$ totalPr <dbl> 51.55, 37.04, 45.50, 44.00, 71.00, 45.00, 37.02, 53...
$ wheels <int> 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, 2, 2, 1, 0, 1, ...
$ cond <fct> new, used, new, new, new, new, used, new, used, use...
$ .fitted <dbl> 49.60260, 44.01777, 49.60260, 49.60260, 56.83544, 4...
$ .se.fit <dbl> 0.7087865, 0.5465195, 0.7087865, 0.7087865, 0.67645...
$ .resid <dbl> 1.9473995, -6.9777674, -4.1026005, -5.6026005, 14.1...
$ .hat <dbl> 0.02103158, 0.01250410, 0.02103158, 0.02103158, 0.0...
$ .sigma <dbl> 4.902339, 4.868399, 4.892414, 4.881308, 4.750591, 4...
$ .cooksd <dbl> 1.161354e-03, 8.712334e-03, 5.154337e-03, 9.612441e...
$ .std.resid <dbl> 0.40270893, -1.43671086, -0.84838977, -1.15857953, ...
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• Draw the scatterplot and save it as data_space by passing the augment()-ed model to ggplot() and
using geom_point().

# scatterplot, with color
data_space <- ggplot(data = augmented_mod,

aes(x = wheels, y = totalPr,
color = cond)) +

geom_point()

• Use geom_line() once to add two parallel lines corresponding to our model.
# single call to geom_line()
data_space +
geom_line(aes(x = wheels, y = .fitted)) +
theme_bw()
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Intercept interpretation

Recall that the cond variable is either new or used. Here are the fitted coefficients from your model:
lm(totalPr ~ wheels + cond, data = mario_kart)

Call:
lm(formula = totalPr ~ wheels + cond, data = mario_kart)

Coefficients:
(Intercept) wheels condused

42.370 7.233 -5.585
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Choose the correct interpretation of the coefficient on condused:

• For each additional wheel, the expected price of a used MarioKart is $5.58 lower.

• The expected price of a used MarioKart is $5.58 less than that of a new one with the
same number of wheels.

• The expected price of a new MarioKart is $5.58 less than that of a used one with the same number of
wheels.

• The used MarioKarts are always $5.58 cheaper.

Common slope interpretation

Recall the fitted coefficients from our model:
lm(totalPr ~ wheels + cond, data = mario_kart)

Call:
lm(formula = totalPr ~ wheels + cond, data = mario_kart)

Coefficients:
(Intercept) wheels condused

42.370 7.233 -5.585

Choose the correct interpretation of the slope coefficient:

• For each additional wheel, the expected price of a MarioKart increases by $7.23 regardless
of whether it is new or used.

• For each additional wheel, the expected price of a new MarioKart increases by $7.23.

• The expected price of a used MarioKart is $5.59 less than that of a new one with the same number of
wheels.

• You should always expect to pay $42.37 for a MarioKart.

2.3 Syntax from math

The babies data set contains observations about the birthweight and other characteristics of children born
in the San Francisco Bay area from 1960–1967.

We would like to build a model for birthweight as a function of the mother’s age and whether this child was
her first (parity == 0). Use the mathematical specification below to code the model in R.

birthweight = β0 + β1 · age + β2 · parity + ε
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Figure 2.1: ‘bwt‘ versus ‘gestation‘

Exercise

The birthweight variable is recorded in the column bwt.

• Use lm() to build the parallel slopes model specified above. It’s not necessary to use factor() in this
case as the variable parity is coded using binary numeric values.

# build model
lm(bwt ~ age + parity, data = babies)

Call:
lm(formula = bwt ~ age + parity, data = babies)

Coefficients:
(Intercept) age parity
118.27782 0.06315 -1.65248

2.4 Syntax from plot

This time, we’d like to build a model for birthweight as a function of the length of gestation and the mother’s
smoking status. Use Figure 2.1 to inform your model specification.
ggplot(data = babies, aes(x = gestation, y = bwt, color = factor(smoke))) +
geom_point(alpha = 0.5) +
theme_bw()
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Exercise

• Use lm() to build a parallel slopes model implied by the plot. It’s not necessary to use factor() in
this case either.

# build model
lm(bwt ~ gestation + smoke, data = babies)

Call:
lm(formula = bwt ~ gestation + smoke, data = babies)

Coefficients:
(Intercept) gestation smoke

-0.9317 0.4429 -8.0883
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Chapter 3

Evaluating and extending parallel
slopes model

This chapter covers model evaluation. By looking at different properties of the model, including the adjusted
R-squared, you’ll learn to compare models so that you can select the best one. You’ll also learn about
interaction terms in linear models.

3.1 R-squared vs. adjusted R-squared

Two common measures of how well a model fits to data are R2 (the coefficient of determination) and the
adjusted R2. The former measures the percentage of the variability in the response variable that is explained
by the model. To compute this, we define

R2 = 1SSE

SST
,

where SSE and SST are the sum of the squared residuals, and the total sum of the squares, respectively.
One issue with this measure is that the SSE can only decrease as new variable are added to the model, while
the SST depends only on the response variable and therefore is not affected by changes to the model. This
means that you can increase R2 by adding any additional variable to your model—even random noise.

The adjusted R2 includes a term that penalizes a model for each additional explanatory variable (where p is
the number of explanatory variables).

R2
adj = 1SSE

SST
· n − 1

n − p − 1
,

We can see both measures in the output of the summary() function on our model object.

Exercise

load("./Data/mario_kart.RData")
mod <- lm(totalPr ~ wheels + cond, data = mario_kart)

• Use summary() to compute R2 and adjusted R2 on the model object called mod.

15
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# R^2 and adjusted R^2
summary(mod)

Call:
lm(formula = totalPr ~ wheels + cond, data = mario_kart)

Residuals:
Min 1Q Median 3Q Max

-11.0078 -3.0754 -0.8254 2.9822 14.1646

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.3698 1.0651 39.780 < 2e-16 ***
wheels 7.2328 0.5419 13.347 < 2e-16 ***
condused -5.5848 0.9245 -6.041 1.35e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.887 on 138 degrees of freedom
Multiple R-squared: 0.7165, Adjusted R-squared: 0.7124
F-statistic: 174.4 on 2 and 138 DF, p-value: < 2.2e-16

The R2 value for mod is 0.7165182, and the R2
adj value is 0.7124098.

• Use mutate() and rnorm() to add a new variable called noise to the mario_kart data set that consists
of random noise. Save the new dataframe as mario_kart_noisy.

# add random noise
set.seed(34)
# add random noise
mario_kart_noisy <- mario_kart %>%
mutate(noise = rnorm(nrow(mario_kart)))

• Use lm() to fit a model that includes wheels, cond, and the random noise term.
# compute new model
mod2 <- lm(totalPr ~ wheels + cond + noise, data = mario_kart_noisy)

• Use summary() to compute R2 and adjusted R2 on the new model object. Did the value of R2 increase?
Yes What about adjusted R2? It also increased. Adding random noise increase both R2 and
R2

adj.
# new R^2 and adjusted R^2
summary(mod2)

Call:
lm(formula = totalPr ~ wheels + cond + noise, data = mario_kart_noisy)

Residuals:
Min 1Q Median 3Q Max

-10.3256 -3.1692 -0.7492 2.8731 14.1293

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.2788 1.0659 39.664 < 2e-16 ***
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wheels 7.2310 0.5410 13.367 < 2e-16 ***
condused -5.4003 0.9354 -5.774 4.97e-08 ***
noise -0.4930 0.4059 -1.215 0.227
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.879 on 137 degrees of freedom
Multiple R-squared: 0.7195, Adjusted R-squared: 0.7134
F-statistic: 117.2 on 3 and 137 DF, p-value: < 2.2e-16

3.2 Prediction

Once we have fit a regression model, we can use it to make predictions for unseen observations or retrieve
the fitted values. Here, we explore two methods for doing the latter.

A traditional way to return the fitted values (i.e. the ŷ’s) is to run the predict() function on the model
object. This will return a vector of the fitted values. Note that predict() will take an optional newdata
argument that will allow you to make predictions for observations that are not in the original data.

A newer alternative is the augment() function from the broom package, which returns a data.frame with the
response variable (y), the relevant explanatory variables (the x’s), the fitted value (ŷ) and some information
about the residuals (ε̂). augment() will also take a newdata argument that allows you to make predictions.

Exercise

The fitted model mod is already in your environment.

• Compute the fitted values of the model as a vector using predict().
# return a vector
VEC <- predict(mod)
head(VEC)

1 2 3 4 5 6
49.60260 44.01777 49.60260 49.60260 56.83544 42.36976

• Compute the fitted values of the model as one column in a data.frame using augment().
# return a data frame
DF <- broom::augment(mod)
head(DF)

# A tibble: 6 x 10
totalPr wheels cond .fitted .se.fit .resid .hat .sigma .cooksd
<dbl> <int> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 51.6 1 new 49.6 0.709 1.95 0.0210 4.90 0.00116
2 37.0 1 used 44.0 0.547 -6.98 0.0125 4.87 0.00871
3 45.5 1 new 49.6 0.709 -4.10 0.0210 4.89 0.00515
4 44 1 new 49.6 0.709 -5.60 0.0210 4.88 0.00961
5 71 2 new 56.8 0.676 14.2 0.0192 4.75 0.0557
6 45 0 new 42.4 1.07 2.63 0.0475 4.90 0.00505
# ... with 1 more variable: .std.resid <dbl>
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Thought experiments

Suppose that after going apple picking you have 12 apples left over. You decide to conduct an experiment
to investigate how quickly they will rot under certain conditions. You place six apples in a cool spot in your
basement, and leave the other six on the window sill in the kitchen. Every week, you estimate the percentage
of the surface area of the apple that is rotten or moldy.

Consider the following models:

rot = β0 + β1 · t + β2 · temp,

and

rot = β0 + β1 · t + β2 · temp + β3 · temp · t,

where t is time, measured in weeks, and temp is a binary variable indicating either cool or warm.

If you decide to keep the interaction term present in the second model, you are implicitly assuming that:

• The amount of rot will vary based on the temperature.

• The amount of rot will vary based on the temperature, after controlling for the length of time they
have been left out.

• The rate at which apples rot will vary based on the temperature.

• Time and temperature are independent.

3.3 Fitting a model with interaction

Including an interaction term in a model is easy—we just have to tell lm() that we want to include that new
variable. An expression of the form
lm(y ~ x + z + x:z, data = mydata)

will do the trick. The use of the colon (:) here means that the interaction between x and z will be a third
term in the model.

Exercise

The data frame mario_kart is already loaded in your workspace.

• Use lm() to fit a model for the price of a MarioKart as a function of its condition and the duration of
the auction, with interaction.

# include interaction
lm(totalPr ~ cond + duration + cond:duration, data = mario_kart)
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Call:
lm(formula = totalPr ~ cond + duration + cond:duration, data = mario_kart)

Coefficients:
(Intercept) condused duration

58.268 -17.122 -1.966
condused:duration

2.325

3.4 Visualizing interaction models

Interaction allows the slope of the regression line in each group to vary. In this case, this means that the
relationship between the final price and the length of the auction is moderated by the condition of each item.

Interaction models are easy to visualize in the data space with ggplot2 because they have the same coeffi-
cients as if the models were fit independently to each group defined by the level of the categorical variable.
In this case, new and used MarioKarts each get their own regression line. To see this, we can set an aesthetic
(e.g. color) to the categorical variable, and then add a geom_smooth() layer to overlay the regression line
for each color.

Exercise

The dataset mario_kart is already loaded in your workspace.

• Use the color aesthetic and the geom_smooth() function to plot the interaction model between
duration and condition in the data space. Make sure you set the method and se arguments of
geom_smooth().

# interaction plot
ggplot(data = mario_kart, aes(y = totalPr, x = duration, color = cond)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw()
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• How does the interaction model differ from the parallel slopes model? Class discussion

3.5 Consequences of Simpson’s paradox

In the simple linear regression model for average SAT score, (total) as a function of average teacher salary
(salary), the fitted coefficient was -5.02 points per thousand dollars. This suggests that for every additional
thousand dollars of salary for teachers in a particular state, the expected SAT score for a student from that
state is about 5 points lower.

In the model that includes the percentage of students taking the SAT, the coefficient on salary becomes
1.84 points per thousand dollars. Choose the correct interpretation of this slope coefficient.
SAT <- read.csv("https://assets.datacamp.com/production/repositories/845/datasets/1a12a19d2cec83ca0b58645689987e2025d91383/SAT.csv")
lm(total ~ salary, data = SAT)

Call:
lm(formula = total ~ salary, data = SAT)

Coefficients:
(Intercept) salary

1.871e+03 -5.019e-03
SAT_wbin <- SAT %>%

mutate(sat_bin = cut(sat_pct, 3))
mod <- lm(formula = total ~ salary + sat_bin, data = SAT_wbin)
mod
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Call:
lm(formula = total ~ salary + sat_bin, data = SAT_wbin)

Coefficients:
(Intercept) salary sat_bin(33,63] sat_bin(63,93.1]
1597.10773 0.00184 -191.45221 -217.73480

• For every additional thousand dollars of salary for teachers in a particular state, the expected SAT
score for a student from that state is about 2 points lower.

• For every additional thousand dollars of salary for teachers in a particular state, the
expected SAT score for a student from that state is about 2 points higher, after controlling
for the percentage of students taking the SAT.

• The average SAT score in richer states is about 2 points higher.

3.6 Simpson’s paradox in action

A mild version of Simpson’s paradox can be observed in the MarioKart auction data. Consider the relation-
ship between the final auction price and the length of the auction. It seems reasonable to assume that longer
auctions would result in higher prices, since—other things being equal—a longer auction gives more bidders
more time to see the auction and bid on the item.

However, a simple linear regression model reveals the opposite: longer auctions are associated with lower
final prices. The problem is that all other things are not equal. In this case, the new MarioKarts—which
people pay a premium for—were mostly sold in one-day auctions, while a plurality of the used MarioKarts
were sold in the standard seven-day auctions.

Our simple linear regression model is misleading, in that it suggests a negative relationship between final
auction price and duration. However, for the used MarioKarts, the relationship is positive.

Exercise

The object slr is already defined for you.
slr <- ggplot(mario_kart, aes(y = totalPr, x = duration)) +
geom_point() +
geom_smooth(method = "lm", se = 0) +
theme_bw()

slr

• Fit a simple linear regression model for final auction price (totalPr) as a function of duration
(duration).

# model with one slope
lm(totalPr ~ duration, data = mario_kart)

Call:
lm(formula = totalPr ~ duration, data = mario_kart)

https://en.wikipedia.org/wiki/Simpson%27s_paradox
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Figure 3.1: ‘totalPr‘ versus ‘duration‘

Coefficients:
(Intercept) duration

52.374 -1.317

• Use aes() to add a color aesthetic that’s mapped to the condition variable to the slr object, shown
in Figure 3.1.

# plot with two slopes
slr + aes(color = cond)
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• Which of the two groups is showing signs of Simpson’s paradox? Class discussion
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Chapter 4

Multiple Regression

This chapter will show you how to add two, three, and even more numeric explanatory variables to a linear
model.

4.1 Fitting a MLR model

In terms of the R code, fitting a multiple linear regression model is easy: simply add variables to the model
formula you specify in the lm() command.

In a parallel slopes model, we had two explanatory variables: one was numeric and one was categorical. Here,
we will allow both explanatory variables to be numeric.

load("./Data/mario_kart.RData")
str(mario_kart)

'data.frame': 141 obs. of 12 variables:
$ ID : num 1.5e+11 2.6e+11 3.2e+11 2.8e+11 1.7e+11 ...
$ duration : int 3 7 3 3 1 3 1 1 3 7 ...
$ nBids : int 20 13 16 18 20 19 13 15 29 8 ...
$ cond : Factor w/ 2 levels "new","used": 1 2 1 1 1 1 2 1 2 2 ...
$ startPr : num 0.99 0.99 0.99 0.99 0.01 ...
$ shipPr : num 4 3.99 3.5 0 0 4 0 2.99 4 4 ...
$ totalPr : num 51.5 37 45.5 44 71 ...
$ shipSp : Factor w/ 8 levels "firstClass","media",..: 6 1 1 6 2 6 6 8 5 1 ...
$ sellerRate: int 1580 365 998 7 820 270144 7284 4858 27 201 ...
$ stockPhoto: Factor w/ 2 levels "no","yes": 2 2 1 2 2 2 2 2 2 1 ...
$ wheels : int 1 1 1 1 2 0 0 2 1 1 ...
$ title : Factor w/ 80 levels " Mario Kart Wii with Wii Wheel for Wii (New)",..: 80 60 22 7 4 19 34 5 79 70 ...

The dataset mario_kart is already loaded in your workspace.

• Fit a multiple linear regression model for total price as a function of the duration of the auction and
the starting price.

# Fit the model using duration and startPr
mod <- lm(totalPr ~ duration + startPr, data = mario_kart)
mod

25
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Call:
lm(formula = totalPr ~ duration + startPr, data = mario_kart)

Coefficients:
(Intercept) duration startPr

51.030 -1.508 0.233

4.2 Tiling the plane

One method for visualizing a multiple linear regression model is to create a heatmap of the fitted values
in the plane defined by the two explanatory variables. This heatmap will illustrate how the model output
changes over different combinations of the explanatory variables.

This is a multistep process:

• First, create a grid of the possible pairs of values of the explanatory variables. The grid should be over
the actual range of the data present in each variable. We’ve done this for you and stored the result as
a data frame called grid.

grid <- expand.grid(duration = seq(1, 10, by = 1), startPr = seq(0.01, 69.95, by = 0.01))

• Use augment() with the newdata argument to find the ŷ’s corresponding to the values in grid.

• Add these to the data_space plot by using the fill aesthetic and geom_tile().
data_space <- ggplot(data = mario_kart,

aes(x = duration, y = startPr)) +
geom_point(aes(color = totalPr)) +
theme_bw()

data_space
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https://en.wikipedia.org/wiki/Heat_map
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Exercise

The model object mod is already in your workspace.

• Use augment() to create a data.frame that contains the values the model outputs for each row of
grid.

# add predictions to grid
price_hats <- broom::augment(mod, newdata = grid)

• Use geom_tile to illustrate these predicted values over the data_space plot. Use the fill aesthetic
and set alpha = 0.5.

# tile the plane
data_space +

geom_tile(data = price_hats,
aes(fill = .fitted), alpha = 0.5)
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4.3 Models in 3D

An alternative way to visualize a multiple regression model with two numeric explanatory variables is as a
plane in three dimensions. This is possible in R using the plotly package.

We have created three objects that you will need:

• x: a vector of unique values of duration
• y: a vector of unique values of startPr
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• plane: a matrix of the fitted values across all combinations of x and y

Much like ggplot(), the plot_ly() function will allow you to create a plot object with variables mapped
to x, y, and z aesthetics. The add_markers() function is similar to geom_point() in that it allows you to
add points to your 3D plot.

Note that plot_ly uses the pipe (%>%) operator to chain commands together.

Exercise

• Run the plot_ly command to draw 3D scatterplot for totalPr as a function of duration and startPr
by mapping the z variable to the response and the x and y variables to the explanatory variables.
Duration should be on the x-axis and starting price should be on the y-axis.

library(plotly)
# draw the 3D scatterplot
p <- plot_ly(data = mario_kart, z = ~totalPr, x = ~duration, y = ~startPr, opacity = 0.6) %>%
add_markers()

p

• Use add_surface() to draw a plane through the cloud of points by setting z = ~plane. See wikipedia
for the definition of an outer product. In what follows, we will use the R function outer() to compute
the values of plane.

u ⊗ v = uvT

summary(mod)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.0295070 1.17913685 43.277001 3.665684e-82
duration -1.5081260 0.25551997 -5.902184 2.644972e-08
startPr 0.2329542 0.04363644 5.338525 3.755647e-07
x <- seq(1, 10, length = 70)
y <- seq(0.010, 59.950, length = 70)
plane <- outer(x, y, function(a, b){summary(mod)$coef[1,1] +

summary(mod)$coef[2,1]*a + summary(mod)$coef[3,1]*b})
# draw the plane
p %>%
add_surface(x = ~x, y = ~y, z = ~plane, showscale = FALSE)

Coefficient magnitude

The coefficients from our model for the total auction price of MarioKarts as a function of auction duration
and starting price are shown below.
mod

Call:
lm(formula = totalPr ~ duration + startPr, data = mario_kart)

https://en.wikipedia.org/wiki/Outer_product


4.4. VISUALIZING PARALLEL PLANES 29

Coefficients:
(Intercept) duration startPr

51.030 -1.508 0.233

A colleague claims that these results imply that the duration of the auction is a more important determinant
of final price than starting price, because the coefficient is larger. This interpretation is false because:

• The coefficient on duration is negative.

• Smaller coefficients are more important.

• The coefficients have different units (dollars per day and dollars per dollar, respectively)
and so they are not directly comparable.

• The intercept coefficient is much bigger, so it is the most important one.

Practicing interpretation

Fit a multiple regression model for the total auction price of an item in the mario_kart data set as a
function of the starting price and the duration of the auction. Compute the coefficients and choose the
correct interpretation of the duration variable.

• For each additional day the auction lasts, the expected final price declines by $1.51, after
controlling for starting price.

• For each additional dollar of starting price, the expected final price increases by $0.23, after controlling
for the duration of the auction.

• The duration of the auction is a more important determinant of final price than starting price, because
the coefficient is larger.

• The average auction lasts 51 days.

4.4 Visualizing parallel planes

By including the duration, starting price, and condition variables in our model, we now have two explanatory
variables and one categorical variable. Our model now takes the geometric form of two parallel planes!

The first plane corresponds to the model output when the condition of the item is new, while the second
plane corresponds to the model output when the condition of the item is used. The planes have the same
slopes along both the duration and starting price axes—it is the z-intercept that is different.

Once again we have stored the x and y vectors for you. Since we now have two planes, there are matrix
objects plane0 and plane1 stored for you as well.
modI <- lm(totalPr ~ duration + startPr + cond, data = mario_kart)
summary(modI)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 53.3447530 1.0804915 49.370822 3.781243e-89
duration -0.6559841 0.2553503 -2.568957 1.127073e-02
startPr 0.1981653 0.0382717 5.177855 7.835882e-07
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condused -8.9493214 1.3237851 -6.760403 3.635333e-10
plane0 <- outer(x, y, function(a, b){53.3447530 -0.6559841*a +

0.1981653*b})
plane1 <- outer(x, y, function(a, b){53.3447530 -0.6559841*a +

0.1981653*b - 8.9493214})

Exercise

• Use plot_ly to draw 3D scatterplot for totalPr as a function of duration, startPr, and cond by
mapping the z variable to the response and the x and y variables to the explanatory variables. Duration
should be on the x-axis and starting price should be on the y-axis. Use color to represent cond.

# draw the 3D scatterplot
p <- plot_ly(data = mario_kart, z = ~totalPr, x = ~duration, y = ~startPr, opacity = 0.6) %>%
add_markers(color = ~cond)

p

• Use add_surface() (twice) to draw two planes through the cloud of points, one for new MarioKarts
and another for used ones. Use the objects plane0 and plane1.

# draw two planes
p %>%
add_surface(x = ~x, y = ~y, z = ~plane0, showscale = FALSE) %>%
add_surface(x = ~x, y = ~y, z = ~plane1, showscale = FALSE)

Parallel plane interpretation

The coefficients from our parallel planes model is shown below.
modI

Call:
lm(formula = totalPr ~ duration + startPr + cond, data = mario_kart)

Coefficients:
(Intercept) duration startPr condused

53.3448 -0.6560 0.1982 -8.9493

Choose the right interpretation of β3 (the coefficient on condUsed):

• The expected premium for new (relative to used) MarioKarts is $8.95, after controlling
for the duration and starting price of the auction.

• The expected premium for used (relative to new) MarioKarts is $8.95, after controlling for the duration
and starting price of the auction.

• For each additional day the auction lasts, the expected final price declines by $8.95, after controlling
for starting price and condition.
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Interpretation of coefficient in a big model

This time we have thrown even more variables into our model, including the number of bids in each auction
(nBids) and the number of wheels. Unfortunately this makes a full visualization of our model impossible,
but we can still interpret the coefficients.
modJ <- lm(totalPr ~ duration + startPr + cond + wheels + nBids,

data = mario_kart)
modJ

Call:
lm(formula = totalPr ~ duration + startPr + cond + wheels + nBids,

data = mario_kart)

Coefficients:
(Intercept) duration startPr condused wheels

39.3741 -0.2752 0.1796 -4.7720 6.7216
nBids
0.1909

Choose the correct interpretation of the coefficient on the number of wheels:

• The average number of wheels is 6.72.

• Each additional wheel costs exactly $6.72.

• Each additional wheel is associated with an increase in the expected auction price of $6.72.

• Each additional wheel is associated with an increase in the expected auction price of $6.72,
after controlling for auction duration, starting price, number of bids, and the condition
of the item.
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Chapter 5

Logistic Regression

In this chapter you’ll learn about using logistic regression, a generalized linear model (GLM), to predict a
binary outcome and classify observations.

5.1 Fitting a line to a binary response

When our response variable is binary, a regression model has several limitations. Among the more obvious—
and logically incongruous—is that the regression line extends infinitely in either direction. This means that
even though our response variable y only takes on the values 0 and 1, our fitted values ŷ can range anywhere
from −∞ to ∞. This doesn’t make sense.

To see this in action, we’ll fit a linear regression model to data about 55 students who applied to medical
school. We want to understand how their undergraduate GPA relates to the probability they will be accepted
by a particular school (Acceptance)

Exercise

library(Stat2Data)
data(MedGPA)

The medical school acceptance data is loaded in your workspace as MedGPA.

• Create a scatterplot called data_space for Acceptance as a function of GPA. Use geom_jitter() to
apply a small amount of jitter to the points in the y-direction by setting width = 0 and height =
0.05.

# scatterplot with jitter
data_space <- ggplot(data = MedGPA, aes(x = GPA, y = Acceptance)) +
geom_jitter(width = 0, height = 0.05, alpha = 0.5) +
theme_bw()

data_space

33
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• Use geom_smooth() to add the simple linear regression line to data_space.
# linear regression line
data_space +
geom_smooth(method = "lm", se = FALSE)

0.0

0.4

0.8

3.0 3.5 4.0

GPA

A
cc

ep
ta

nc
e



5.2. FITTING A LINE TO A BINARY RESPONSE (2) 35

5.2 Fitting a line to a binary response (2)

In the previous exercise, we identified a major limitation to fitting a linear regression model when we have
a binary response variable. However, it is not always inappropriate to do so. Note that our regression line
only makes illogical predictions (i.e. ŷ < 0 or ŷ > 1) for students with very high or very low GPAs. For
GPAs closer to average, the predictions seem fine.

Moreover, the alternative logistic regression model—which we will fit next—is very similar to the linear
regression model for observations near the average of the explanatory variable. It just so happens that the
logistic curve is very straight near its middle. Thus, in these cases a linear regression model may still be
acceptable, even for a binary response.

Exercise

• Use filter() to find the subset of the observations whose GPAs are between 3.375 and 3.77, inclusive.
# filter
MedGPA_middle <- MedGPA %>%
filter(GPA >= 3.375, GPA <= 3.770)

head(MedGPA_middle)

Accept Acceptance Sex BCPM GPA VR PS WS BS MCAT Apps
1 D 0 F 3.59 3.62 11 9 9 9 38 5
2 A 1 F 3.74 3.69 12 11 7 10 40 5
3 A 1 F 3.53 3.38 9 11 4 11 35 11
4 A 1 M 3.59 3.72 10 9 7 10 36 5
5 A 1 F 3.74 3.71 8 10 6 11 35 5
6 A 1 F 3.35 3.49 11 8 4 8 31 9

• Create a scatterplot called data_space for Acceptance as a function of GPA for only those observations.
Use geom_jitter() to apply 0.05 jitter to the points in the y-direction and no jitter to the x-direction.

# scatterplot with jitter
data_space <- ggplot(MedGPA_middle, aes(x = GPA, y = Acceptance)) +
geom_jitter(width = 0, height = 0.05, alpha = 0.5) +
theme_bw()

data_space
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• Use geom_smooth() to add only the simple linear regression line to data_space.
# linear regression line
data_space +
geom_smooth(method = "lm", se = FALSE)
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5.3 Fitting a model

Logistic regression is a special case of a broader class of generalized linear models, often known as GLMs.
Specifying a logistic regression model is very similar to specify a regression model, with two important
differences:

• We use the glm() function instead of lm()

• We specify the family argument and set it to binomial. This tells the GLM function that we want
to fit a logistic regression model to our binary response. [The terminology stems from the assumption
that our binary response follows a binomial distribution.]

We still use the formula and data arguments with glm().

Note that the mathematical model is now:

log
(

y

1 − y

)
= β0 + β1 · x + ε,

where ε is the error term.

Exercise

• Use glm() to fit a logistic regression model for Acceptance as a function of GPA.
# fit model
mod <- glm(Acceptance ~ GPA, data = MedGPA, family = binomial)
mod

Call: glm(formula = Acceptance ~ GPA, family = binomial, data = MedGPA)

Coefficients:
(Intercept) GPA

-19.207 5.454

Degrees of Freedom: 54 Total (i.e. Null); 53 Residual
Null Deviance: 75.79
Residual Deviance: 56.84 AIC: 60.84

5.4 Using geom_smooth()

Our logistic regression model can be visualized in the data space by overlaying the appropriate logistic curve.
We can use the geom_smooth() function to do this. Recall that geom_smooth() takes a method argument
that allows you to specify what type of smoother you want to see. In our case, we need to specify that we
want to use the glm() function to do the smoothing.

However we also need to tell the glm() function which member of the GLM family we want to use. To do this,
we will pass the family argument to glm() as a list using the method.args argument to geom_smooth().
This mechanism is common in R, and allows one function to pass a list of arguments to another function.

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Binomial_distribution
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Exercise

• Create a scatterplot called data_space for Acceptance as a function of GPA. Use geom_jitter() to
apply a small amount of jitter to the points in the y-direction. Set width = 0 and height = 0.05 in
geom_jitter().

# scatterplot with jitter
data_space <- ggplot(data = MedGPA, aes(y = Acceptance, x = GPA)) +
geom_jitter(width = 0, height = 0.05, alpha = 0.5) +
theme_bw()

• Use geom_smooth() to add the logistic regression line to data_space by specifying the method and
method.args arguments to fit a logistic glm.

# add logistic curve
data_space +
geom_smooth(method = "glm", se = FALSE, method.args = list(family = "binomial"))
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5.5 Using bins

One of the difficulties in working with a binary response variable is understanding how it “changes.” The
response itself (y) is either 0 or 1, while the fitted values (ŷ)—which are interpreted as probabilities—are
between 0 and 1. But if every medical school applicant is either admitted or not, what does it mean to talk
about the probability of being accepted?

What we’d like is a larger sample of students, so that for each GPA value (e.g. 3.54) we had many observations
(say n), and we could then take the average of those n observations to arrive at the estimated probability of
acceptance. Unfortunately, since the explanatory variable is continuous, this is hopeless—it would take an
infinite amount of data to make these estimates robust.
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Instead, what we can do is put the observations into bins based on their GPA value. Within each bin, we
can compute the proportion of accepted students, and we can visualize our model as a smooth logistic curve
through those binned values.

We have created a data.frame called MedGPA_binned that aggregates the original data into separate bins
for each 1/6 of GPA. It also contains the fitted values from the logistic regression model.
gpa_bins <- quantile(MedGPA$GPA, probs = seq(0, 1, 1/6))
gpa_bins

0% 16.66667% 33.33333% 50% 66.66667% 83.33333% 100%
2.72 3.30 3.44 3.58 3.70 3.87 3.97

MedGPA$bins <- cut(MedGPA$GPA, breaks = gpa_bins, include.lowest = TRUE)
head(MedGPA)

Accept Acceptance Sex BCPM GPA VR PS WS BS MCAT Apps bins
1 D 0 F 3.59 3.62 11 9 9 9 38 5 (3.58,3.7]
2 A 1 M 3.75 3.84 12 13 8 12 45 3 (3.7,3.87]
3 A 1 F 3.24 3.23 9 10 5 9 33 19 [2.72,3.3]
4 A 1 F 3.74 3.69 12 11 7 10 40 5 (3.58,3.7]
5 A 1 F 3.53 3.38 9 11 4 11 35 11 (3.3,3.44]
6 A 1 M 3.59 3.72 10 9 7 10 36 5 (3.7,3.87]
MedGPA_binned <- MedGPA %>%
group_by(bins) %>%
summarize(mean_GPA = mean(GPA), acceptance_rate = mean(Acceptance))

MedGPA_binned

# A tibble: 6 x 3
bins mean_GPA acceptance_rate
<fct> <dbl> <dbl>

1 [2.72,3.3] 3.11 0.2
2 (3.3,3.44] 3.39 0.2
3 (3.44,3.58] 3.54 0.75
4 (3.58,3.7] 3.65 0.333
5 (3.7,3.87] 3.79 0.889
6 (3.87,3.97] 3.91 1

Here we are plotting y as a function of x, where that function is

p̂(X) = P̂r(Y = 1|X) = exp(β̂0 + β̂1x)
1 + exp(β̂0 + β̂1x)

Note that the left hand side is the expected probability y of being accepted to medical school.

Exercise

• Create a scatterplot called data_space for acceptance_rate as a function of mean_GPA using the
binned data in MedGPA_binned. Use geom_line() to connect the points.

# binned points and line
data_space <- ggplot(data = MedGPA_binned, aes(x = mean_GPA, y = acceptance_rate)) +
geom_point() +
geom_line() +
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theme_bw()
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• Augment the model mod. Create predictions on the scale of the response variable by using the
type.predict argument.

# augmented model
MedGPA_plus <- mod %>%
augment(type.predict = "response")

• Use geom_line() to illustrate the model through the fitted values.
# logistic model on probability scale
data_space +
geom_line(data = MedGPA_plus, aes(x = GPA, y = .fitted), color = "red")
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The logistic predictions seem to follow the binned values pretty well.

5.6 Odds scale

For most people, the idea that we could estimate the probability of being admitted to medical school based
on undergraduate GPA is fairly intuitive. However, thinking about how the probability changes as a function
of GPA is complicated by the non-linear logistic curve. By translating the response from the probability
scale to the odds scale, we make the right hand side of our equation easier to understand.

If the probability of getting accepted is y, then the odds are y/(1y). Expressions of probabilities in terms of
odds are common in many situations, perhaps most notably gambling.

Here we are plotting y/(1y) as a function of x, where that function is

odds(ŷ) = ŷ

1 − ŷ
= exp(β0 + β1 · x)

Note that the left hand side is the expected odds of being accepted to medical school. The right hand side
is now a familiar exponential function of x.

The MedGPA_binned data frame contains the data for each GPA bin, while the MedGPA_plus data frame
records the original observations after being augment()-ed by mod.

https://en.wikipedia.org/wiki/Odds
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Exercise

• Add a variable called odds to MedGPA_binned that records the odds of being accepted to medical school
for each bin.

# compute odds for bins
MedGPA_binned <- MedGPA_binned %>%
mutate(odds = acceptance_rate / (1 - acceptance_rate))

• Create a scatterplot called data_space for odds as a function of mean_GPA using the binned data in
MedGPA_binned. Connect the points with geom_line().

# plot binned odds
data_space <- ggplot(data = MedGPA_binned,

aes(x = mean_GPA, y = odds)) +
geom_point() +
geom_line() +
theme_bw()
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• Add a variable called odds_hat to MedGPA_plus that records the predicted odds of being accepted for
each observation.

# compute odds for observations
MedGPA_plus <- MedGPA_plus %>%
mutate(odds_hat = .fitted / (1 - .fitted))

• Use geom_line() to illustrate the model through the fitted values. Note that you should be plotting
the ôdds’s.

# logistic model on odds scale
data_space +
geom_line(data = MedGPA_plus, aes(x = GPA, y = odds_hat), color = "red")
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5.7 Log-odds scale

Previously, we considered two formulations of logistic regression models:

• on the probability scale, the units are easy to interpret, but the function is non-linear, which makes it
hard to understand

• on the odds scale, the units are harder (but not impossible) to interpret, and the function is exponential,
which makes it harder (but not impossible) to interpret

We’ll now add a third formulation:

• on the log-odds scale, the units are nearly impossible to interpret, but the function is linear, which
makes it easy to understand

As you can see, none of these three is uniformly superior. Most people tend to interpret the fitted values on
the probability scale and the function on the log-odds scale. The interpretation of the coefficients is most
commonly done on the odds scale. Recall that we interpreted our slope coefficient β1 in linear regression as
the expected change in y given a one unit change in x. On the probability scale, the function is non-linear
and so this approach won’t work. On the log-odds, the function is linear, but the units are not interpretable
(what does the log of the odds mean??). However, on the odds scale, a one unit change in x leads to the
odds being multiplied by a factor of β1. To see why, we form the odds ratio:

OR = odds(ŷ|x + 1)
odds(ŷ|x)

= exp β1

Thus, the exponentiated coefficient β1 tells us how the expected odds change for a one unit increase in the
explanatory variable. It is tempting to interpret this as a change in the expected probability, but this is
wrong and can lead to nonsensical predictions (e.g. expected probabilities greater than 1).

https://en.wikipedia.org/wiki/Odds_ratio
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Exercise

• Add a variable called log_odds to MedGPA_binned that records the odds of being accepted for each
bin. Recall that odds(p) = p/(1p).

# compute log odds for bins
MedGPA_binned <- MedGPA_binned %>%

mutate(log_odds = log(acceptance_rate / (1 - acceptance_rate)))

• Create a scatterplot called data_space for log_odds as a function of mean_GPA using the binned data
in MedGPA_binned. Use geom_line to connect the points.

# plot binned log odds
data_space <- ggplot(data = MedGPA_binned,
aes(y = log_odds, x = mean_GPA)) +

geom_point() +
geom_line() +
theme_bw()
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• Add a variable called log_odds_hat to MedGPA_plus that records the predicted odds of being accepted
for each observation.

# compute log odds for observations
MedGPA_plus <- MedGPA_plus %>%
mutate(log_odds_hat = log(.fitted / (1 - .fitted)))

• Use geom_line() to illustrate the model through the fitted values. Note that you should be plotting
the ôdds’s.
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# logistic model on log odds scale
data_space +
geom_line(data = MedGPA_plus, aes(x = GPA, y = log_odds_hat), color = "red")
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When you’re on the log-odds scale, your model is a simple linear function.

Interpretation of logistic regression

The fitted coefficient β̂1 rom the medical school logistic regression model is 5.45. The exponential of this is
233.73.

Donald’s GPA is 2.9, and thus the model predicts that the probability of him getting into medical school is
3.26%. The odds of Donald getting into medical school are 0.0337, or—phrased in gambling terms—29.6:1.
If Donald hacks the school’s registrar and changes his GPA to 3.9, then which of the following statements is
FALSE:

• His expected odds of getting into medical school improve to 7.8833 (or about 9:8).

• His expected probability of getting into medical school improves to 88.7%.

• His expected log-odds of getting into medical school improve by 5.45.

• His expected probability of getting into medical school improves to 7.9%. This is a FALSE
statement.
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5.8 Making probabilistic predictions

Just as we did with linear regression, we can use our logistic regression model to make predictions about
new observations. In this exercise, we will use the newdata argument to the augment() function from the
broom package to make predictions about students who were not in our original data set. These predictions
are sometimes called out-of-sample.

Following our previous discussion about scales, with logistic regression it is important that we specify on
which scale we want the predicted values. Although the default is link – which uses the log-odds scale – we
want our predictions on the probability scale, which is the scale of the response variable. The type.predict
argument to augment() controls this behavior.

Exercise

• Create a new data frame which has one variable called GPA and one row, with the value 3.51.
# create new data frame
new_data <- data.frame(GPA = 3.51)

• Use augment() to find the expected probability of admission to medical school for a student with a
GPA of 3.51.

# make predictions
augment(mod, newdata = new_data, type.predict = "response")

# A tibble: 1 x 3
GPA .fitted .se.fit

<dbl> <dbl> <dbl>
1 3.51 0.484 0.0834

By framing your prediction as a probability you can show how likely it is that this student will get admitted
to medical school.

5.9 Making binary predictions

Naturally, we want to know how well our model works. Did it predict acceptance for the students who were
actually accepted to medical school? Did it predict rejections for the student who were not admitted? These
types of predictions are called in-sample. One common way to evaluate models with a binary response is
with a confusion matrix. [Yes, that is actually what it is called!]

However, note that while our response variable is binary, our fitted values are probabilities. Thus, we have
to round them somehow into binary predictions. While the probabilities convey more information, we might
ultimately have to make a decision, and so this rounding is common in practice. There are many different
ways to round, but for simplicity we will predict admission if the fitted probability is greater than 0.5, and
rejection otherwise.

First, we’ll use augment() to make the predictions, and then mutate() and round() to convert these
probabilities into binary decisions. Then we will form the confusion matrix using the table() function.
table() will compute a 2-way table when given a data frame with two categorical variables, so we will first
use select() to grab only those variables.

You will find that this model made only 15 mistakes on these 55 observations, so it is nearly 73% accurate.

https://en.wikipedia.org/wiki/Confusion_matrix
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Exercise

The model object mod is already in your workspace.

• Create a data frame with the actual observations, and their fitted probabilities, and add a new column
with the binary decision by rounding the fitted probabilities.

# data frame with binary predictions
tidy_mod <- augment(mod, type.predict = "response") %>%
mutate(Acceptance_hat = round(.fitted))

• Compute the confusion matrix between the actual and predicted acceptance.
# confusion matrix
tidy_mod %>%
select(Acceptance, Acceptance_hat) %>%
table()

Acceptance_hat
Acceptance 0 1

0 16 9
1 6 24
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Chapter 6

Case Study: Italian restaurants in
NYC

Explore the relationship between price and the quality of food, service, and decor for Italian restaurants in
NYC.

Exploratory data analysis

Multiple regression can be an effective technique for understanding how a response variable changes as a
result of changes to more than one explanatory variable. But it is not magic – understanding the relationships
among the explanatory variables is also necessary, and will help us build a better model. This process is
often called exploratory data analysis (EDA) and is covered in another DataCamp course.

One quick technique for jump-starting EDA is to examine all of the pairwise scatterplots in your data.
This can be achieved using the pairs() function. Look for variables in the nyc data set that are strongly
correlated, as those relationships will help us check for multicollinearity later on.

Exercise

Which pairs of variables appear to be strongly correlated?
pairs(nyc)

49

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Multicollinearity
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• Case and Decor.

• Restaurant and Price.

• Price and Food.

• Price and East.

6.1 SLR models

Based on your knowledge of the restaurant industry, do you think that the quality of the food in a restaurant
is an important determinant of the price of a meal at that restaurant? It would be hard to imagine that it
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wasn’t. We’ll start our modeling process by plotting and fitting a model for Price as a function of Food.

On your own, interpret these coefficients and examine the fit of the model. What does the coefficient of Food
mean in plain English? “Each additional rating point of food quality is associated with a…”

Exercise

• Use ggplot to make a scatter plot for Price as a function of Food.
# Price by Food plot
ggplot(data = nyc, aes(x = Food, y = Price)) +
geom_point() +
theme_bw()
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• Use lm() to fit a simple linear regression model for Price as a function of Food.
# Price by Food model
lm(Price ~ Food, data = nyc)

Call:
lm(formula = Price ~ Food, data = nyc)

Coefficients:
(Intercept) Food

-17.832 2.939

What does the simple linear model say about how food quality affects price?
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6.2 Parallel lines with location

In real estate, a common mantra is that the three most important factors in determining the price of a
property are “location, location, and location.” If location drives up property values and rents, then we
might imagine that location would increase a restaurant’s costs, which would result in them having higher
prices. In many parts of New York, the east side (east of 5th Avenue) is more developed and perhaps more
expensive. [This is increasingly less true, but was more true at the time these data were collected.]

Let’s expand our model into a parallel slopes model by including the East variable in addition to Food.

Use lm() to fit a parallel slopes model for Price as a function of Food and East. Interpret the coefficients
and the fit of the model. Can you explain the meaning of the coefficient on East in simple terms? Did the
coefficient on Food change from the previous model? If so, why? Did it change by a lot or just a little?

Identify the statement that is FALSE:

lm(Price ~ Food + East, data = nyc)

Call:
lm(formula = Price ~ Food + East, data = nyc)

Coefficients:
(Intercept) Food East

-17.430 2.875 1.459

• Each additional rating point of food quality is associated with a $2.88 increase in the expected price
of meal, after controlling for location.

• The premium for an Italian restaurant in NYC associated with being on the east side of 5th Avenue is
$1.46, after controlling for the quality of the food.

• The change in the coefficient of food from $2.94 in the simple linear model to $2.88 in
this model has profound practical implications for restaurant owners.

• None of the above.

6.3 A plane in 3D

One reason that many people go to a restaurant—apart from the food—is that they don’t have to cook or
clean up. Many people appreciate the experience of being waited upon, and we can all agree that the quality
of the service at restaurants varies widely. Are people willing to pay more for better restaurant Service?
More interestingly, are they willing to pay more for better service, after controlling for the quality of the
food?

Multiple regression gives us a way to reason about these questions. Fit the model with Food and Service
and interpret the coefficients and fit. Did the coefficient on Food change from the previous model? What
do the coefficients on Food and Service tell you about how these restaurants set prices?

Next, let’s visually assess our model using plotly. The x and y vectors, as well as the plane matrix, have
been created for you.
hmod <- lm(Price ~ Food + Service, data = nyc)
summary(hmod)$coef
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.158582 5.6651431 -3.734872 2.583345e-04
Food 1.495369 0.4462060 3.351297 9.971979e-04
Service 1.704101 0.4184986 4.071939 7.220788e-05
x <- seq(16, 25, length = 50)
y <- seq(14, 24, length = 50)
plane <- outer(x, y, function(a, b){-21.158582 + 1.495369*a + 1.704101*b})

Exercise

• Use lm() to fit a multiple regression model for Price as a function of Food and Service.
# fit model
lm(Price ~ Food + Service, data = nyc)

Call:
lm(formula = Price ~ Food + Service, data = nyc)

Coefficients:
(Intercept) Food Service

-21.159 1.495 1.704

• Use plot_ly to draw 3D scatterplot for Price as a function of Food and Service by mapping the z
variable to the response and the x and y variables to the explanatory variables. Place the food quality
on the x-axis and service rating on the y-axis.

library(plotly)
# draw 3D scatterplot
p <- plot_ly(data = nyc, z = ~ Price, x = ~ Food, y = ~ Service, opacity = 0.6) %>%
add_markers()

p

• Use add_surface() to draw a plane through the cloud of points using the object plane.
# draw a plane
p %>%
add_surface(x = ~x, y = ~y, z = ~ plane, showscale = FALSE)

Is it surprising how service affects the price of a meal?

6.4 Parallel planes with location

We have explored models that included the quality of both food and service, as well as location, but we haven’t
put these variables all into the same model. Let’s now build a parallel planes model that incorporates all
three variables.

Examine the coefficients closely. Do they make sense based on what you understand about these data so
far? How did the coefficients change from the previous models that you fit?
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Exercise

• Use lm() to fit a parallel planes model for Price as a function of Food, Service, and East.
# Price by Food and Service and East
lm(Price ~ Food + Service + East, data = nyc)

Call:
lm(formula = Price ~ Food + Service + East, data = nyc)

Coefficients:
(Intercept) Food Service East

-20.8155 1.4863 1.6647 0.9649

Does it seem like location has a big impact on price?

Interpretation of location coefficient

The fitted coefficients from the parallel planes model are listed below.
lm(Price ~ Food + Service + East, data = nyc)

Call:
lm(formula = Price ~ Food + Service + East, data = nyc)

Coefficients:
(Intercept) Food Service East

-20.8155 1.4863 1.6647 0.9649

Which of the following statements is FALSE?

Reason about the magnitude of the East coefficient.

• The premium for being on the East side of 5th Avenue is just less than a dollar, after controlling for
the quality of food and service.

• The impact of location is relatively small, since one additional rating point of either food or service
would result in a higher expected price than moving a restaurant from the West side to the East side.

• The expected price of a meal on the East side is about 96% of the cost of a meal on the
West side, after controlling for the quality of food and service.

6.5 Impact of location

The impact of location brings us to a modeling question: should we keep this variable in our model? In a
later course, you will learn how we can conduct formal hypothesis tests to help us answer that question. In
this course, we will focus on the size of the effect. Is the impact of location big or small?
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One way to think about this would be in terms of the practical significance. Is the value of the coefficient
large enough to make a difference to your average person? The units are in dollars so in this case this
question is not hard to grasp.

Another way is to examine the impact of location in the context of the variability of the other variables. We
can do this by building our parallel planes in 3D and seeing how far apart they are. Are the planes close
together or far apart? Does the East variable clearly separate the data into two distinct groups? Or are the
points all mixed up together?
modJ <- lm(Price ~ Food + Service + East, data = nyc)
summary(modJ)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.8154761 5.6843188 -3.6619121 0.0003373782
Food 1.4862725 0.4467122 3.3271368 0.0010831115
Service 1.6646884 0.4214169 3.9502175 0.0001157434
East 0.9648814 1.1363317 0.8491195 0.3970525764
plane0 <- outer(x, y, function(a, b){-20.8154761 + 1.4862725*a + 1.6646884*b + 0.9648814})
plane1 <- outer(x, y, function(a, b){-20.8154761 + 1.4862725*a + 1.6646884*b})

Exercise

• Use plot_ly to draw 3D scatterplot for Price as a function of Food, Service, and East by mapping
the z variable to the response and the x and y variables to the numeric explanatory variables. Use
color to indicate the value of East. Place Food on the x-axis and Service on the y-axis.

library(plotly)
# draw 3D scatterplot
p <- plot_ly(data = nyc, z = ~Price, x = ~Food, y = ~Service, opacity = 0.6) %>%
add_markers(color = ~factor(East))

p

• Use add_surface() (twice) to draw two planes through the cloud of points, one for restaurants on the
West side and another for restaurants on the East side. Use the objects plane0 and plane1.

# draw two planes
p %>%
add_surface(x = ~x, y = ~y, z = ~plane0, showscale = FALSE) %>%
add_surface(x = ~x, y = ~y, z = ~plane1, showscale = FALSE)

How does this visualization relate to the model coefficients you found in the last exercise?

6.6 Full model

One variable we haven’t considered is Decor. Do people, on average, pay more for a meal in a restaurant
with nicer decor? If so, does it still matter after controlling for the quality of food, service, and location?

By adding a third numeric explanatory variable to our model, we lose the ability to visualize the model in
even three dimensions. Our model is now a hyperplane – or rather, parallel hyperplanes – and while we
won’t go any further with the geometry, know that we can continue to add as many variables to our model
as we want. As humans, our spatial visualization ability taps out after three numeric variables (maybe you

https://en.wikipedia.org/wiki/Hyperplane
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could argue for four, but certainly no further), but neither the mathematical equation for the regression
model, nor the formula specification for the model in R, is bothered by the higher dimensionality.

Use lm() to fit a parallel planes model for Price as a function of Food, Service, Decor, and East.
lm(Price ~ Food + Service + Decor + East, data = nyc)

Call:
lm(formula = Price ~ Food + Service + Decor + East, data = nyc)

Coefficients:
(Intercept) Food Service Decor East
-24.023800 1.538120 -0.002727 1.910087 2.068050

Notice the dramatic change in the value of the Service coefficient.

Which of the following interpretations is invalid?

• Since the quality of food, decor, and service were all strongly correlated, multicollinearity is the likely
explanation.

• Once we control for the quality of food, decor, and location, the additional information conveyed by
service is negligible.

• Service is not an important factor in determining the price of a meal. This is false!

• None of the above.
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