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Chapter 1

Prerequisites

This material is from the DataCamp course Machine Learning Toolbox by Zachary Deane-Mayer and Max
Kuhn. Before using this material, the reader should have completed and be comfortable with the material
in the DataCamp modules Introduction to R, Intermediate R, and Correlation and Regression.

Reminder to self: each *.Rmd file contains one and only one chapter, and a chapter is defined by the first-level
heading #.
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Chapter 2

Regression models: fitting them and
evaluating their performance

In the first chapter of this course, you’ll fit regression models with train() and evaluate their out-of-sample
performance using cross-validation and root-mean-square error (RMSE).

Welcome to the Toolbox Video

In-sample RMSE for linear regression

RMSE is commonly calculated in-sample on your training set. What’s a potential drawback to calculating
training set error?

• There’s no potential drawback to calculating training set error, but you should calculate R2 instead of
RMSE.

• You have no idea how well your model generalizes to new data (i.e. overfitting).

• You should manually inspect your model to validate its coefficients and calculate RMSE.

2.1 In-sample RMSE for linear regression on diamonds

diamonds is a classic dataset from the ggplot2 package written by Wickham et al. (2018). The dataset
contains physical attributes of diamonds as well as the price they sold for. One interesting modeling challenge
is predicting diamond price based on their attributes using something like a linear regression.

Recall that to fit a linear regression, you use the lm() function in the following format:
mod <- lm(y ~ x, data = my_data)

To make predictions using mod on the original data, you call the predict() function:

7
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pred <- predict(mod, newdata = my_data)

Exercise

• Fit a linear model on the diamonds dataset predicting price using all other variables as predictors (i.e.
price ~ .). Save the result to model.

library(ggplot2)
# Fit lm model: model
model <- lm(price ~ ., data = diamonds)

• Make predictions using model on the full original dataset and save the result to p.
# Predict on full data: p
p <- predict(model, newdata = diamonds)

• Compute errors using the formula errors = actual - predicted. Save the result to error.
# Compute errors: error
error <- diamonds$price - p

• Compute RMSE and print it to the console.
# Compute RMSE
RMSE <- sqrt(mean(error^2))
RMSE

[1] 1129.843

Out-of-sample error measures video

Out-of-sample RMSE for linear regression

What is the advantage of using a train/test split rather than just validating your model in-sample on the
training set?

• It takes less time to calculate error on the test set, since it is smaller than the training set.

• There is no advantage to using a test set. You can just use adjusted R2 on your training set.

• It gives you an estimate of how well your model performs on new data.

2.2 Randomly order the data frame

One way you can take a train/test split of a dataset is to order the dataset randomly, then divide it into the
two sets. This ensures that the training set and test set are both random samples and that any biases in
the ordering of the dataset (e.g. if it had originally been ordered by price or size) are not retained in the
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samples we take for training and testing your models. You can think of this like shuffling a brand new deck
of playing cards before dealing hands.

First, you set a random seed so that your work is reproducible and you get the same random split each time
you run your script:
set.seed(42)

Next, you use the sample() function to shuffle the row indices of the diamonds dataset. You can later use
these these indices to reorder the dataset.
rows <- sample(nrow(diamonds))

Finally, you can use this random vector to reorder the diamonds dataset:
diamonds <- diamonds[rows, ]

Exercise

• Set the random seed to 42.
# Set seed
set.seed(42)

• Make a vector of row indices called rows.
# Shuffle row indices: rows
rows <- sample(nrow(diamonds))

• Randomly reorder the diamonds data frame.
# Randomly order data
diamonds <- diamonds[rows, ]

2.3 Try an 80/20 split

Now that your dataset is randomly ordered, you can split the first 80% of it into a training set, and the last
20% into a test set. You can do this by choosing a split point approximately 80% of the way through your
data:
split <- round(nrow(mydata) * 0.80)

You can then use this point to break off the first 80% of the dataset as a training set:
mydata[1:split, ]

And then you can use that same point to determine the test set:
mydata[(split + 1):nrow(mydata), ]
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Exercise

• Choose a row index to split on so that the split point is approximately 80% of the way through the
diamonds dataset. Call this index split.

# Determine row to split on: split
split <- round(nrow(diamonds)*0.80)

• Create a training set called train using that index.
# Create train
train <- diamonds[1:split, ]

• Create a test set called test using that index.
# Create test
test <- diamonds[(split + 1):nrow(diamonds), ]

2.4 Predict on test set

Now that you have a randomly split training set and test set, you can use the lm() function as you did in
the first exercise to fit a model to your training set, rather than the entire dataset. Recall that you can use
the formula interface to the linear regression function to fit a model with a specified target variable using all
other variables in the dataset as predictors:
mod <- lm(y ~ ., data = training_data)

You can use the predict() function to make predictions from that model on new data. The new dataset
must have all of the columns from the training data, but they can be in a different order with different values.
Here, rather than re-predicting on the training set, you can predict on the test set, which you did not use
for training the model. This will allow you to determine the out-of-sample error for the model in the next
exercise:
p <- predict(model, newdata = new_data)

Exercise

• Fit an lm() model called model to predict price using all other variables as covariates. Be sure to use
the training set, train.

# Fit lm model on train: model
model <- lm(price ~ . , data = train)

• Predict on the test set, test, using predict(). Store these values in a vector called p.
# Predict on test: p
p <- predict(model, newdata = test, type = "response")
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2.5 Calculate test set RMSE

Now that you have predictions on the test set, you can use these predictions to calculate an error metric (in
this case RMSE) on the test set and see how the model performs out-of-sample, rather than in-sample as
you did in the first exercise. You first do this by calculating the errors between the predicted diamond prices
and the actual diamond prices by subtracting the predictions from the actual values.

Once you have an error vector, calculating RMSE is as simple as squaring it, taking the mean, then taking
the square root:
sqrt(mean(error^2))

Exercise

• Calculate the error between the predictions on the test set and the actual diamond prices in the test
set. Call this error.

# Compute errors: error
error <- test$price - p

• Calculate RMSE using this error vector, just printing the result to the console.
# Calculate RMSE
RMSE <- sqrt(mean(error^2))
RMSE

[1] 1136.596

Comparing out-of-sample RMSE to in-sample RMSE

Why is the test set RMSE higher than the training set RMSE?

• Because you overfit the training set and the test set contains data the model hasn’t seen
before.

• Because you should not use a test set at all and instead just look at error on the training set.

• Because the test set has a smaller sample size the training set and thus the mean error is lower.

Cross Valdiation Video

Advantage of cross-validation

What is the advantage of cross-validation over a single train/test split?

• There is no advantage to cross-validation, just as there is no advantage to a single train/test split. You
should be validating your models in-sample with a metric like adjusted R2.

• You can pick the best test set to minimize the reported RMSE of your model.
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• It gives you multiple estimates of out-of-sample error, rather than a single estimate.

Note: If all of your estimates give similar outputs, you can be more certain of the model’s accuracy. If
your estimates give different outputs, that tells you the model does not perform consistently and suggests a
problem with it.

2.6 10-fold cross-validation

A better approach to validating models is to use multiple systematic test sets rather than a single random
train/test split. Fortunately, the caret package written by from Jed Wing et al. (2018) makes this very easy
to do:
model <- train(y ~ ., my_data)

caret supports many types of cross-validation, and you can specify which type of cross-validation and
the number of cross-validation folds with the trainControl() function, which you pass to the trControl
argument in train():
model <- train(
y ~ ., my_data,
method = "lm",
trControl = trainControl(
method = "cv", number = 10,
verboseIter = TRUE

)
)

It is important to note that you pass the method for modeling to the main train() function and the method
for cross-validation to the trainControl() function.

Exercise

• Load the caret package.
# Load the caret package
library(caret)

• Fit a linear regression to model price using all other variables in the diamonds dataset as predictors.
Use the train() function and 10-fold cross-validation.

# Fit lm model using 10-fold CV: model
model <- train(
price ~ ., data = diamonds,
method = "lm",
trControl = trainControl(
method = "cv", number = 10,
verboseIter = FALSE

)
)

• Print the model to the console and examine the results.
# Print model to console
model
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Linear Regression

53940 samples
9 predictor

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 48547, 48546, 48546, 48545, 48545, 48545, ...
Resampling results:

RMSE Rsquared MAE
1130.658 0.9197492 740.4646

Tuning parameter 'intercept' was held constant at a value of TRUE
model$finalModel # show model coefficients

Call:
lm(formula = .outcome ~ ., data = dat)

Coefficients:
(Intercept) carat cut.L cut.Q cut.C

5753.762 11256.978 584.457 -301.908 148.035
`cut^4` color.L color.Q color.C `color^4`
-20.794 -1952.160 -672.054 -165.283 38.195

`color^5` `color^6` clarity.L clarity.Q clarity.C
-95.793 -48.466 4097.431 -1925.004 982.205

`clarity^4` `clarity^5` `clarity^6` `clarity^7` depth
-364.918 233.563 6.883 90.640 -63.806

table x y z
-26.474 -1008.261 9.609 -50.119

# summary(model) # to see all

2.7 5-fold cross-validation

In this tutorial, you will use a wide variety of datasets to explore the full flexibility of the caret package.
Here, you will use the famous Boston housing dataset, where the goal is to predict median home values in
various Boston suburbs.

You can use exactly the same code as in the previous exercise, but change the dataset used by the model:
model <- train(
medv ~ ., Boston,
method = "lm",
trControl = trainControl(
method = "cv", number = 10,
verboseIter = FALSE

)
)

Next, you can reduce the number of cross-validation folds from 10 to 5 using the number argument to the
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trainControl() argument:
trControl = trainControl(
method = "cv", number = 5,
verboseIter = TRUE

)

Exercise

• Load the MASS package.
# Load the MASS pacakge
library(MASS)

• Fit an lm() model to the Boston housing dataset, such that medv is the response variable and all other
variables are explanatory variables. Use 5-fold cross-validation rather than 10-fold cross-validation.

# Fit lm model using 5-fold CV: model
model <- train(
medv ~. , data = Boston,
method = "lm",
trControl = trainControl(
method = "cv", number = 5,
verboseIter = FALSE

)
)

• Print the model to the console and inspect the results.
# Print model to console
model

Linear Regression

506 samples
13 predictor

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 405, 403, 405, 406, 405
Resampling results:

RMSE Rsquared MAE
4.794707 0.7290369 3.372915

Tuning parameter 'intercept' was held constant at a value of TRUE
# show coefficients of model
model$finalModel

Call:
lm(formula = .outcome ~ ., data = dat)

Coefficients:
(Intercept) crim zn indus chas



2.8. 5 × 5-FOLD CROSS-VALIDATION 15

3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00
nox rm age dis rad

-1.777e+01 3.810e+00 6.922e-04 -1.476e+00 3.060e-01
tax ptratio black lstat

-1.233e-02 -9.527e-01 9.312e-03 -5.248e-01
summary(model)

Call:
lm(formula = .outcome ~ ., data = dat)

Residuals:
Min 1Q Median 3Q Max

-15.595 -2.730 -0.518 1.777 26.199

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

2.8 5 × 5-fold cross-validation

You can do more than just one iteration of cross-validation. Repeated cross-validation gives you a better
estimate of the test-set error. You can also repeat the entire cross-validation procedure. This takes longer,
but gives you many more out-of-sample datasets to look at and much more precise assessments of how well
the model performs.

One of the awesome things about the train() function in caret is how easy it is to run very different models
or methods of cross-validation just by tweaking a few simple arguments to the function call. For example,
you could repeat your entire cross-validation procedure 5 times for greater confidence in your estimates of
the model’s out-of-sample accuracy, e.g.:
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trControl = trainControl(
method = "repeatedcv", number = 5,
repeats = 5, verboseIter = TRUE

)

Exercise

• Re-fit the linear regression model to the Boston housing dataset. Use 5 repeats of 5-fold cross-
validation.

# Fit lm model using 5 x 5-fold CV: model
model <- train(
medv ~ ., data = Boston,
method = "lm",
trControl = trainControl(
method = "repeatedcv", number = 5,
repeats = 5, verboseIter = FALSE

)
)

• Print the model to the console.
# Print model to console
model

Linear Regression

506 samples
13 predictor

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 5 times)
Summary of sample sizes: 405, 405, 404, 405, 405, 406, ...
Resampling results:

RMSE Rsquared MAE
4.870744 0.7259058 3.400369

Tuning parameter 'intercept' was held constant at a value of TRUE
summary(model)

Call:
lm(formula = .outcome ~ ., data = dat)

Residuals:
Min 1Q Median 3Q Max

-15.595 -2.730 -0.518 1.777 26.199

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
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zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

2.9 Making predictions on new data

Finally, the model you fit with the train() function has the exact same predict() interface as the linear
regression models you fit earlier.

After fitting a model with train(), you can call predict() with new data, e.g:
predict(my_model, newdata = new_data)

Exercise

• Use the predict() function to make predictions with model on the full Boston housing dataset. Print
the result to the console.

# Predict on full Boston dataset
head(predict(model, newdata = Boston))

1 2 3 4 5 6
30.00384 25.02556 30.56760 28.60704 27.94352 25.25628
tail(predict(model, newdata = Boston))

501 502 503 504 505 506
20.46871 23.53334 22.37572 27.62743 26.12797 22.34421
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Chapter 3

Classification models: fitting them
and evaluating their performance

In this chapter, you’ll fit classification models with train() and evaluate their out-of-sample performance
using cross-validation and area under the curve (AUC).

Logistic regression on sonar video

Why a train/test split?

What is the point of making a train/test split for binary classification problems?

• To make the problem harder for the model by reducing the dataset size.

• To evaluate your models out-of-sample, on new data.

• To reduce the dataset size, so your models fit faster.

• There is no real reason; it is no different than evaluating your models in-sample.

3.1 Try a 60/40 split

As you saw in the video, you’ll be working with the Sonar dataset in this chapter, using a 60% training set
and a 40% test set. We’ll practice making a train/test split one more time, just to be sure you have the
hang of it. Recall that you can use the sample() function to get a random permutation of the row indices
in a dataset, to use when making train/test splits, e.g.:
rows <- sample(nrow(my_data))

And then use those row indices to randomly reorder the dataset, e.g.:
my_data <- my_data[rows, ]

19
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Once your dataset is randomly ordered, you can split off the first 60% as a training set and the last 40% as
a test set.

Exercise

• Shuffle the row indices of Sonar and store the result in rows.
library(mlbench)
data(Sonar)
# Shuffle row indices: rows
set.seed(421)
rows <- sample(nrow(Sonar))

• Use rows to randomly reorder the rows of Sonar.
# Randomly order data
Sonar <- Sonar[rows, ]

• Identify the proper row to split on for a 60/40 split. Store this row number as split.
# Identify row to split on: split
split <- round(nrow(Sonar)*.60, 0)
split

[1] 125

• Save the first 60% as a training set.
# Create train
train <- Sonar[1:split, ]

• Save the last 40% as the test set.
# Create test
test <- Sonar[(split+1):nrow(Sonar), ]

3.2 Fit a logistic regression model

Once you have your random training and test sets you can fit a logistic regression model to your training
set using the glm() function. glm() is a more advanced version of lm() that allows for more varied types of
regression models, aside from plain vanilla ordinary least squares regression.

Be sure to pass the argument family = "binomial" to glm() to specify that you want to do logistic (rather
than linear) regression. For example:
glm(Target ~ ., family = "binomial", dataset)

Don’t worry about warnings like
glm.fit: algorithm did not converge or glm.fit: fitted probabilities numerically 0 or 1 occurred

These are common on smaller datasets and usually don’t cause any issues. They typically mean your dataset
is perfectly separable, which can cause problems for the math behind the model, but R’s glm() function is
almost always robust enough to handle this case with no problems.
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Once you have a glm() model fit to your dataset, you can predict the outcome (e.g. rock or mine) on the
test set using the predict() function with the argument type = "response":
predict(my_model, test, type = "response")

Exercise

• Fit a logistic regression called model to predict Class using all other variables as predictors. Use the
training set for Sonar.

# Fit glm model: model
model <- glm(Class ~ ., data = train, family = "binomial")

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

• Predict on the test set using that model. Call the result p like you’ve done before.
# Predict on test: p
p <- predict(model, newdata = test, type = "response")

Confusion matrix video

Confusion Matrix

See https://en.wikipedia.org/wiki/Confusion_matrix for a table and formulas.

Confusion matrix takeaways

What information does a confusion matrix provide?

• True positive rates

• True negative rates

• False positive rates

• False negative rates

• All of the above

3.3 Calculate a confusion matrix

As you saw in the video, a confusion matrix is a very useful tool for calibrating the output of a model
and examining all possible outcomes of your predictions (true positive, true negative, false positive, false
negative).

https://en.wikipedia.org/wiki/Confusion_matrix


22CHAPTER 3. CLASSIFICATION MODELS: FITTING THEM AND EVALUATING THEIR PERFORMANCE

Before you make your confusion matrix, you need to “cut” your predicted probabilities at a given threshold
to turn probabilities into a factor of class predictions. Combine ifelse() with factor() as follows:
pos_or_neg <- ifelse(probability_prediction > threshold, positive_class, negative_class)
p_class <- factor(pos_or_neg, levels = levels(test_values))

confusionMatrix() in caret improves on table() from base R by adding lots of useful ancillary statistics in
addition to the base rates in the table. You can calculate the confusion matrix (and the associated statistics)
using the predicted outcomes as well as the actual outcomes, e.g.:
confusionMatrix(p_class, test_values)

Exercise

• Use ifelse() to create a character vector, m_or_r that is the positive class, "M", when p is greater
than 0.5, and the negative class, "R", otherwise.

library(caret)
# Calculate class probabilities: p_class
m_or_r <- ifelse(p > 0.50, "M", "R")

• Convert m_or_r to be a factor, p_class, with levels the same as those of test[["Class"]].
p_class <- factor(m_or_r, levels = levels(test[["Class"]]))
# OR
p_class <- factor(m_or_r, levels = c("M", "R"))

• Make a confusion matrix with confusionMatrix(), passing p_class and the "Class" column from
the test dataset.

# Create confusion matrix
caret::confusionMatrix(p_class, test$Class)

Confusion Matrix and Statistics

Reference
Prediction M R

M 11 29
R 33 10

Accuracy : 0.253
95% CI : (0.1639, 0.3604)

No Information Rate : 0.5301
P-Value [Acc > NIR] : 1.0000

Kappa : -0.4907
Mcnemar's Test P-Value : 0.7032

Sensitivity : 0.2500
Specificity : 0.2564

Pos Pred Value : 0.2750
Neg Pred Value : 0.2326

Prevalence : 0.5301
Detection Rate : 0.1325

Detection Prevalence : 0.4819
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Balanced Accuracy : 0.2532

'Positive' Class : M

# Using table()
table(p_class, test$Class)

p_class M R
M 11 29
R 33 10

# Using xtabs()
xtabs(~p_class + test$Class)

test$Class
p_class M R

M 11 29
R 33 10

Exercise

Calculating accuracy—Use confusionMatrix(p_class, test[["Class"]]) to calculate a confusion matrix
on the test set.

• What is the test set accuracy of this model (rounded to the nearest percent)?
RES <- caret::confusionMatrix(p_class, test[["Class"]])
RES

Confusion Matrix and Statistics

Reference
Prediction M R

M 11 29
R 33 10

Accuracy : 0.253
95% CI : (0.1639, 0.3604)

No Information Rate : 0.5301
P-Value [Acc > NIR] : 1.0000

Kappa : -0.4907
Mcnemar's Test P-Value : 0.7032

Sensitivity : 0.2500
Specificity : 0.2564

Pos Pred Value : 0.2750
Neg Pred Value : 0.2326

Prevalence : 0.5301
Detection Rate : 0.1325

Detection Prevalence : 0.4819
Balanced Accuracy : 0.2532
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'Positive' Class : M

RES$overall[1]

Accuracy
0.253012

The accuracy of this model is 25.3%.

• What is the test set true positive rate (or sensitivity) of this model (rounded to the nearest percent)?
Sens <- round(RES[[4]]["Sensitivity"]*100, 1)
Sens

Sensitivity
25

The test set sensitivity of this model is 25%.

• What is the test set true negative rate (or specificity) of this model (rounded to the nearest percent)?
Spec <- round(RES[[4]]["Specificity"]*100, 1)
Spec

Specificity
25.6

The test set specificity of this model is 25.6%.

Class probabilities and predictions video

Exercise

Probabilities and classes—What’s the relationship between the predicted probabilities and the predicted
classes?

• You determine the predicted probabilities by looking at the average accuracy of the predicted classes.

• There is no relationship; they’re completely different things.

• Predicted classes are based off of predicted probabilities plus a classification threshold.

3.4 Try another threshold

In the previous exercises, you used a threshold of 0.50 to cut your predicted probabilities to make class
predictions (rock vs mine). However, this classification threshold does not always align with the goals for a
given modeling problem.

For example, pretend you want to identify the objects you are really certain are mines. In this case, you
might want to use a probability threshold of 0.90 to get fewer predicted mines, but with greater confidence
in each prediction.
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• Use ifelse() to create a character vector, m_or_r that is the positive class, "M", when p is greater
than 0.9, and the negative class, "R", otherwise.

# Apply threshold of 0.9
m_or_r <- ifelse(p > 0.90, "M", "R")

• Convert m_or_r to be a factor, p_class, with levels the same as those of test[["Class"]].
p_class <- factor(m_or_r, levels = levels(test[["Class"]]))

• Make a confusion matrix with confusionMatrix(), passing p_class and the "Class" column from
the test dataset.

# Create confusion matrix
confusionMatrix(p_class, test[["Class"]])

Confusion Matrix and Statistics

Reference
Prediction M R

M 10 27
R 34 12

Accuracy : 0.2651
95% CI : (0.1742, 0.3734)

No Information Rate : 0.5301
P-Value [Acc > NIR] : 1.0000

Kappa : -0.4603
Mcnemar's Test P-Value : 0.4424

Sensitivity : 0.2273
Specificity : 0.3077

Pos Pred Value : 0.2703
Neg Pred Value : 0.2609

Prevalence : 0.5301
Detection Rate : 0.1205

Detection Prevalence : 0.4458
Balanced Accuracy : 0.2675

'Positive' Class : M

3.5 From probabilites to confusion matrix

Conversely, say you want to be really certain that your model correctly identifies all the mines as mines. In
this case, you might use a prediction threshold of 0.10, instead of 0.90.

• Use ifelse() to create a character vector, m_or_r that is the positive class, "M", when p is greater
than 0.1, and the negative class, "R", otherwise.

# Apply threshold of 0.1
m_or_r <- ifelse(p > 0.10, "M", "R")
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• Convert m_or_r to be a factor, p_class, with levels the same as those of test[["Class"]].
p_class <- factor(m_or_r, levels = levels(test[["Class"]]))

• Make a confusion matrix with confusionMatrix(), passing p_class and the "Class" column from
the test dataset.

# Create confusion matrix
confusionMatrix(p_class, test[["Class"]])

Confusion Matrix and Statistics

Reference
Prediction M R

M 11 30
R 33 9

Accuracy : 0.241
95% CI : (0.1538, 0.3473)

No Information Rate : 0.5301
P-Value [Acc > NIR] : 1.0000

Kappa : -0.517
Mcnemar's Test P-Value : 0.8011

Sensitivity : 0.2500
Specificity : 0.2308

Pos Pred Value : 0.2683
Neg Pred Value : 0.2143

Prevalence : 0.5301
Detection Rate : 0.1325

Detection Prevalence : 0.4940
Balanced Accuracy : 0.2404

'Positive' Class : M

Introducing the ROC curve video

What’s the value of a ROC curve?

What is the primary value of an ROC curve?

• It has a cool acronym.

• It can be used to determine the true positive and false positive rates for a particular classification
threshold.

• It evaluates all possible thresholds for splitting predicted probabilities into predicted
classes.
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3.6 Plot an ROC curve

As you saw in the video, an ROC curve is a really useful shortcut for summarizing the performance of a
classifier over all possible thresholds. This saves you a lot of tedious work computing class predictions for
many different thresholds and examining the confusion matrix for each.

My favorite package for computing ROC curves is caTools written by Tuszynski (2019), which contains
a function called colAUC(). This function is very user-friendly and can actually calculate ROC curves for
multiple predictors at once. In this case, you only need to calculate the ROC curve for one predictor, e.g.:
colAUC(predicted_probabilities, actual, plotROC = TRUE)

The function will return a score called AUC (more on that later) and the plotROC = TRUE argument will
return the plot of the ROC curve for visual inspection.

Exercise

• Predict probabilities (i.e. type = "response") on the test set, then store the result as p.
library(caTools)
# Predict on test: p
p <- predict(model, newdata = test, type = "response")

• Make an ROC curve using the predicted test set probabilities.
colAUC(p, test$Class, plotROC = TRUE)
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Area under the curve (AUC) video

Model, ROC, and AUC

What is the AUC of a perfect model?

• 0.00

• 0.50

• 1.00

3.7 Customizing trainControl

As you saw in the video, area under the ROC curve is a very useful, single-number summary of a model’s
ability to discriminate the positive from the negative class (e.g. mines from rocks). An AUC of 0.5 is no
better than random guessing, an AUC of 1.0 is a perfectly predictive model, and an AUC of 0.0 is perfectly
anti-predictive (which rarely happens).

This is often a much more useful metric than simply ranking models by their accuracy at a set threshold, as
different models might require different calibration steps (looking at a confusion matrix at each step) to find
the optimal classification threshold for that model.

You can use the trainControl() function in caret to use AUC (instead of accuracy), to tune the parameters
of your models. The twoClassSummary() convenience function allows you to do this easily.

When using twoClassSummary(), be sure to always include the argument classProbs = TRUE or your
model will throw an error! (You cannot calculate AUC with just class predictions. You need to have class
probabilities as well.)

Exercise

• Customize the trainControl object to use twoClassSummary rather than defaultSummary.

• Use 10-fold cross-validation.

• Be sure to tell trainControl()to return class probabilities.
# Create trainControl object: myControl
myControl <- trainControl(
method = "cv",
number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = FALSE

)
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3.8 Using custom trainControl

Now that you have a custom trainControl object, it’s easy to fit caret models that use AUC rather than
accuracy to tune and evaluate the model. You can just pass your custom trainControl object to the
train() function via the trControl argument, e.g.:
train(<standard arguments here>, trControl = myControl)

This syntax gives you a convenient way to store a lot of custom modeling parameters and then use them
across multiple different calls to train(). You will make extensive use of this trick in Chapter 5.

Exercise

• Use train() to fit a glm model (i.e. method = "glm") to Sonar using your custom trainControl
object, myControl. You want to predict Class from all other variables in the data (i.e. Class ~ .).
Save the result to model.

# Train glm with custom trainControl: model
model <- train(Class ~ ., data = Sonar,

method = "glm",
trControl = myControl)

• Print the model to the console and examine its output.
# Print model to console
model

Generalized Linear Model

208 samples
60 predictor
2 classes: 'M', 'R'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 187, 187, 187, 187, 187, 187, ...
Resampling results:

ROC Sens Spec
0.726835 0.7462121 0.6633333
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Chapter 4

Tuning model parameters to improve
performance

In this chapter, you will use the train() function to tweak model parameters through cross-validation and
grid search.

Random forests and wine video

Random forests vs. linear models

What’s the primary advantage of random forests over linear models?

• They make you sound cooler during job interviews.

• You can’t understand what’s going on inside of a random forest model, so you don’t have to explain it
to anyone.

• A random forest is a more flexible model than a linear model, but just as easy to fit.

4.1 Fit a random forest

As you saw in the video, random forest models are much more flexible than linear models, and can model
complicated nonlinear effects as well as automatically capture interactions between variables. They tend to
give very good results on real world data, so let’s try one out on the wine quality dataset, where the goal
is to predict the human-evaluated quality of a batch of wine, given some of the machine-measured chemical
and physical properties of that batch.

Fitting a random forest model is exactly the same as fitting a generalized linear regression model, as you did
in the previous chapter. You simply change the method argument in the train function to be "ranger". The
ranger package written by Wright et al. (2019) is a rewrite of R’s classic randomForest package written by
Breiman et al. (2018) and fits models much faster, but gives almost exactly the same results. We suggest
that all beginners use the ranger package for random forest modeling.

31
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Exercise

• Train a random forest called model on the wine quality dataset, wine, such that quality is the
response variable and all other variables are explanatory variables. Data is available from https:
//archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/.

• Use method = "ranger".

• Use a tuneLength of 1.

• Use 5 CV folds.

• Print model to the console.
library(caret)
# Load wine data set
wine <- read.csv("./Data/wine_dataset.csv")
set.seed(42)
# Fit random forest: model
model <- train(
quality ~.,
tuneLength = 1,
data = wine,
method = "ranger",
trControl = trainControl(method = "cv",

number = 5,
verboseIter = FALSE)

)

# Print model to console
model

Random Forest

6497 samples
12 predictor

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 5199, 5197, 5198, 5197, 5197
Resampling results across tuning parameters:

splitrule RMSE Rsquared MAE
variance 0.5994113 0.5374130 0.4347958
extratrees 0.6111844 0.5279777 0.4558074

Tuning parameter 'mtry' was held constant at a value of 3
Tuning
parameter 'min.node.size' was held constant at a value of 5
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were mtry = 3, splitrule =
variance and min.node.size = 5.

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
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model$finalModel

Ranger result

Call:
ranger::ranger(dependent.variable.name = ".outcome", data = x, mtry = min(param$mtry, ncol(x)), min.node.size = param$min.node.size, splitrule = as.character(param$splitrule), write.forest = TRUE, probability = classProbs, ...)

Type: Regression
Number of trees: 500
Sample size: 6497
Number of independent variables: 12
Mtry: 3
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 0.337557
R squared (OOB): 0.5573457

Explore a wider model space video

Advantage of a longer tune length

What’s the advantage of a longer tuneLength?

• You explore more potential models and can potentially find a better model.

• Your models take less time to fit.

• There’s no advantage; you’ll always end up with the same final model.

4.2 Try a longer tune length

Recall from the video that random forest models have a primary tuning parameter of mtry, which controls
how many variables are exposed to the splitting search routine at each split. For example, suppose that a
tree has a total of 10 splits and mtry = 2. This means that there are 10 samples of 2 predictors each time
a split is evaluated.

Use a larger tuning grid this time, but stick to the defaults provided by the train() function. Try a
tuneLength of 3, rather than 1, to explore some more potential models, and plot the resulting model using
the plot function.

Exercise

• Train a random forest model, model, using the wine dataset on the quality variable with all other
variables as explanatory variables. (This will take a few seconds to run, so be patient!)
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• Use method = "ranger".

• Use a tuneLength of 3.

• Use 5 CV folds.

• Print model to the console.

• Plot the model after fitting it.
# Fit random forest: model
model <- train(
quality ~ .,
tuneLength = 3,
data = wine, method = "ranger",
trControl = trainControl(method = "cv", number = 5, verboseIter = FALSE)

)
# Print model to console
print(model)

Random Forest

6497 samples
12 predictor

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 5198, 5197, 5198, 5198, 5197
Resampling results across tuning parameters:

mtry splitrule RMSE Rsquared MAE
2 variance 0.6028505 0.5364907 0.4415914
2 extratrees 0.6191443 0.5227601 0.4665002
7 variance 0.6032059 0.5280572 0.4352658
7 extratrees 0.6054314 0.5297898 0.4456246
12 variance 0.6065267 0.5209531 0.4358597
12 extratrees 0.6050458 0.5271183 0.4428500

Tuning parameter 'min.node.size' was held constant at a value of 5
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were mtry = 2, splitrule =
variance and min.node.size = 5.

# Plot model
plot(model)
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Custom tuning grids video

Advantages of a custom tuning grid

Why use a custom tuneGrid?

• There’s no advantage; you’ll always end up with the same final model.

• It gives you more fine-grained control over the tuning parameters that are explored.

• It always makes your models run faster.

4.3 Fit a random forest with custom tuning

Now that you’ve explored the default tuning grids provided by the train() function, let’s customize your
models a bit more.

You can provide any number of values for mtry, from 2 up to the number of columns in the dataset. In
practice, there are diminishing returns for much larger values of mtry, so you will use a custom tuning grid
that explores 2 simple models (mtry = 2 and mtry = 3) as well as one more complicated model (mtry =
7).
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Exercise

• Define a custom tuning grid.

– Set the number of variables to possibly split at each node, .mtry, to a vector of 2, 3, and 7.

– Set the rule to split on, .splitrule, to "variance".

– Set the minimum node size, .min.node.size, to 5.

• Train another random forest model, model, using the wine dataset on the quality variable with all
other variables as explanatory variables.

– Use method = "ranger".

– Use the custom tuneGrid.

– Use 5 CV folds.
# Define the tuning grid: tuneGrid
tuneGrid <- data.frame(
.mtry = c(2, 3, 7),
.splitrule = "variance",
.min.node.size = 5

)

# Fit random forest: model
model <- train(
quality ~ .,
tuneGrid = tuneGrid,
data = wine,
method = "ranger",
trControl = trainControl(method = "cv",

number = 5,
verboseIter = FALSE)

)

• Print model to the console.
# Print model to console
model

Random Forest

6497 samples
12 predictor

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 5197, 5196, 5199, 5198, 5198
Resampling results across tuning parameters:

mtry RMSE Rsquared MAE
2 0.5994031 0.5409142 0.4387527
3 0.5987053 0.5384036 0.4354743
7 0.6000501 0.5323440 0.4334891

Tuning parameter 'splitrule' was held constant at a value of
variance
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Tuning parameter 'min.node.size' was held constant at a value
of 5
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were mtry = 3, splitrule =
variance and min.node.size = 5.

• Plot the model after fitting it using plot().
# Plot model
plot(model)
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Introducing glmnet video

Advantage of glmnet

What’s the advantage of glmnet over regular glm models?

• glmnet models automatically find interaction variables.

• glmnet models don’t provide p-values or confidence intervals on predictions.

• glmnet models place constraints on your coefficients, which helps prevent overfitting.
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4.4 Make a custom trainControl

The wine quality dataset was a regression problem, but now you are looking at a classification problem. This
is a simulated dataset based on the “don’t overfit” competition on Kaggle a number of years ago.

Classification problems are a little more complicated than regression problems because you have to provide
a custom summaryFunction to the train() function to use the AUC metric to rank your models. Start by
making a custom trainControl, as you did in the previous chapter. Be sure to set classProbs = TRUE,
otherwise the twoClassSummary for summaryFunction will break.

Exercise

Make a custom trainControl called myControl for classification using the trainControl function.

• Use 10 CV folds.

• Use twoClassSummary for the summaryFunction.

• Be sure to set classProbs = TRUE.
# Create custom trainControl: myControl
myControl <- trainControl(
method = "cv",
number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = FALSE

)

4.5 Fit glmnet with custom trainControl

Now that you have a custom trainControl object, fit a glmnet model to the “don’t overfit” dataset. Recall
from the video that glmnet is an extension of the generalized linear regression model (or glm) that places
constraints on the magnitude of the coefficients to prevent overfitting. This is more commonly known as
“penalized” regression modeling and is a very useful technique on datasets with many predictors and few
values.

glmnet is capable of fitting two different kinds of penalized models, controlled by the alpha parameter:

• Ridge regression (or alpha = 0)

• Lasso regression (or alpha = 1)

You’ll now fit a glmnet model to the “don’t overfit” dataset using the defaults provided by the caret package.

Exercise

Train a glmnet model called model on the overfit data. Use the custom trainControl from the previous
exercise (myControl). The variable y is the response variable and all other variables are explanatory variables.
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overfit <- read.csv("https://assets.datacamp.com/production/course_1048/datasets/overfit.csv")
model <- train(y ~ .,

data = overfit,
method = "glmnet",
trControl = myControl)

Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was
not in the result set. ROC will be used instead.

• Print the model to the console.
# Print model
print(model)

glmnet

250 samples
200 predictors
2 classes: 'class1', 'class2'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 225, 225, 224, 225, 225, 225, ...
Resampling results across tuning parameters:

alpha lambda ROC Sens Spec
0.10 0.0001012745 0.4085145 0 0.9483696
0.10 0.0010127448 0.4041667 0 0.9610507
0.10 0.0101274483 0.4214674 0 0.9956522
0.55 0.0001012745 0.4107790 0 0.9438406
0.55 0.0010127448 0.4066123 0 0.9440217
0.55 0.0101274483 0.4238225 0 0.9871377
1.00 0.0001012745 0.3630435 0 0.9398551
1.00 0.0010127448 0.3805254 0 0.9398551
1.00 0.0101274483 0.4361413 0 0.9827899

ROC was used to select the optimal model using the largest value.
The final values used for the model were alpha = 1 and lambda = 0.01012745.

• Use the max() function to find the maximum of the ROC statistic contained somewhere in
model[["results"]].

max(model[["results"]][["ROC"]])

[1] 0.4361413

glmnet with custom tuning grid video

Why a custom tuning grid?

Why use a custom tuning grid for a glmnet model?
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• There’s no reason to use a custom grid; the default is always the best.

• The default tuning grid is very small and there are many more potential glmnet models
you want to explore.

• glmnet models are really slow, so you should never try more than a few tuning parameters.

4.6 glmnet with custom trainControl and tuning

As you saw in the video, the glmnet model actually fits many models at once (one of the great things about
the package). You can exploit this by passing a large number of lambda values, which control the amount
of penalization in the model. train() is smart enough to only fit one model per alpha value and pass all of
the lambda values at once for simultaneous fitting.

My favorite tuning grid for glmnet models is:
expand.grid(alpha = 0:1,

lambda = seq(0.0001, 1, length = 100))

This grid explores a large number of lambda values (100, in fact), from a very small one to a very large one.
(You could increase the maximum lambda to 10, but in this exercise 1 is a good upper bound.)

If you want to explore fewer models, you can use a shorter lambda sequence. For example, lambda =
seq(0.0001, 1, length = 10) would fit 10 models per value of alpha.

You also look at the two forms of penalized models with this tuneGrid: ridge regression and lasso regression.
alpha = 0 is pure ridge regression, and alpha = 1 is pure lasso regression. You can fit a mixture of the two
models (i.e. an elastic net) using an alpha between 0 and 1. For example, alpha = .05 would be 95% ridge
regression and 5% lasso regression.

In this problem you’ll just explore the 2 extremes–pure ridge and pure lasso regression–for the purpose of
illustrating their differences.

Exercise

• Train a glmnet model on the overfit data such that y is the response variable and all other variables
are explanatory variables. Make sure to use your custom trainControl from the previous exercise
(myControl). Also, use a custom tuneGrid to explore alpha = 0:1 and 20 values of lambda between
0.0001 and 1 per value of alpha.

# Train glmnet with custom trainControl and tuning: model
model <- train(
y ~ ., data = overfit,
tuneGrid = expand.grid(alpha = 0:1,

lambda = seq(0.0001, 1, length = 20)),
method = "glmnet",
trControl = myControl

)

Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was
not in the result set. ROC will be used instead.

• Print model to the console.
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# Print model to console
model

glmnet

250 samples
200 predictors
2 classes: 'class1', 'class2'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 225, 225, 226, 225, 225, 225, ...
Resampling results across tuning parameters:

alpha lambda ROC Sens Spec
0 0.00010000 0.4061594 0 0.9786232
0 0.05272632 0.4379529 0 1.0000000
0 0.10535263 0.4462862 0 1.0000000
0 0.15797895 0.4613225 0 1.0000000
0 0.21060526 0.4805254 0 1.0000000
0 0.26323158 0.4910326 0 1.0000000
0 0.31585789 0.4931159 0 1.0000000
0 0.36848421 0.4972826 0 1.0000000
0 0.42111053 0.4972826 0 1.0000000
0 0.47373684 0.4929348 0 1.0000000
0 0.52636316 0.4951087 0 1.0000000
0 0.57898947 0.4971920 0 1.0000000
0 0.63161579 0.4971920 0 1.0000000
0 0.68424211 0.5015399 0 1.0000000
0 0.73686842 0.5057065 0 1.0000000
0 0.78949474 0.5057065 0 1.0000000
0 0.84212105 0.5035326 0 1.0000000
0 0.89474737 0.5035326 0 1.0000000
0 0.94737368 0.5057065 0 1.0000000
0 1.00000000 0.5057065 0 1.0000000
1 0.00010000 0.3278080 0 0.9356884
1 0.05272632 0.5268116 0 1.0000000
1 0.10535263 0.5000000 0 1.0000000
1 0.15797895 0.5000000 0 1.0000000
1 0.21060526 0.5000000 0 1.0000000
1 0.26323158 0.5000000 0 1.0000000
1 0.31585789 0.5000000 0 1.0000000
1 0.36848421 0.5000000 0 1.0000000
1 0.42111053 0.5000000 0 1.0000000
1 0.47373684 0.5000000 0 1.0000000
1 0.52636316 0.5000000 0 1.0000000
1 0.57898947 0.5000000 0 1.0000000
1 0.63161579 0.5000000 0 1.0000000
1 0.68424211 0.5000000 0 1.0000000
1 0.73686842 0.5000000 0 1.0000000
1 0.78949474 0.5000000 0 1.0000000
1 0.84212105 0.5000000 0 1.0000000
1 0.89474737 0.5000000 0 1.0000000
1 0.94737368 0.5000000 0 1.0000000
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Figure 4.1: ‘glmnet‘ plot
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ROC was used to select the optimal model using the largest value.
The final values used for the model were alpha = 1 and lambda = 0.05272632.

• Print the max() of the ROC statistic in model[["results"]]. You can access it using
model[["results"]][["ROC"]].

# Print maximum ROC statistic
max(model[["results"]][["ROC"]])

[1] 0.5268116

4.7 Interpreting glmnet plots

Figure 4.1 shows the tuning plot for the custom tuned glmnet model you created in the last exercise. For
the overfit dataset, which value of alpha is better?

• alpha = 0 (ridge)

• alpha = 1 (lasso)



Chapter 5

Preprocessing your data

In this chapter, you will practice using train() to preprocess data before fitting models, improving your
ability to making accurate predictions.

Median imputation vs. omitting rows

What’s the value of median imputation?

• It removes some variance from your data, making it easier to model.

• It lets you model data with missing values.

• It’s useless; you should just throw out rows of data with any missings.

5.1 Apply median imputation

In this chapter, you’ll be using a version of the Wisconsin Breast Cancer dataset. This dataset presents a
classic binary classification problem: 50% of the samples are benign, 50% are malignant, and the challenge
is to identify which are which.

This dataset is interesting because many of the predictors contain missing values and most rows of the
dataset have at least one missing value. This presents a modeling challenge, because most machine learning
algorithms cannot handle missing values out of the box. For example, your first instinct might be to fit a
logistic regression model to this data, but prior to doing this you need a strategy for handling the NAs.

Fortunately, the train() function in caret contains an argument called preProcess, which allows you to
specify that median imputation should be used to fill in the missing values. In previous chapters, you created
models with the train() function using formulas such as y ~ .. An alternative way is to specify the x and
y arguments to train(), where x is an object with samples in rows and features in columns and y is a
numeric or factor vector containing the outcomes. Said differently, x is a matrix or data frame that contains
the whole dataset you’d use for the data argument to the lm() call, for example, but excludes the response
variable column; y is a vector that contains just the response variable column.

For this exercise, the argument x to train() is loaded in your workspace as breast_cancer_x and y as
breast_cancer_y.

43



44 CHAPTER 5. PREPROCESSING YOUR DATA

url <- "https://assets.datacamp.com/production/course_1048/datasets/BreastCancer.RData"
download.file(url, "./Data/BreastCancer.RData")
load("./Data/BreastCancer.RData")

Exercise

• Use the train() function to fit a glm model called model to the breast cancer dataset. Use preProcess
= "medianImpute" to handle the missing values.

library(caret)
# Create custom trainControl: myControl
myControl <- trainControl(
method = "cv",
number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = FALSE

)
# Apply median imputation: model
model <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "medianImpute"

)

Warning in train.default(x = breast_cancer_x, y = breast_cancer_y, method =
"glm", : The metric "Accuracy" was not in the result set. ROC will be used
instead.

• Print model to the console.
# Print model to console
model

Generalized Linear Model

699 samples
9 predictor
2 classes: 'benign', 'malignant'

Pre-processing: median imputation (9)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 629, 630, 629, 629, 629, 628, ...
Resampling results:

ROC Sens Spec
0.9909642 0.9694686 0.9378333
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Comparing KNN imputation to median imputation

Will KNN imputation always be better than median imputation?

• No, you should try both options and keep the one that gives more accurate models.

• Yes, KNN is a more complicated model than medians, so it’s always better.

• No, medians are more statistically valid than KNN and should always be used.

5.2 Use KNN imputation

In the previous exercise, you used median imputation to fill in missing values in the breast cancer dataset,
but that is not the only possible method for dealing with missing data.

An alternative to median imputation is k-nearest neighbors, or KNN, imputation. This is a more advanced
form of imputation where missing values are replaced with values from other rows that are similar to the
current row. While this is a lot more complicated to implement in practice than simple median imputation, it
is very easy to explore in caret using the preProcess argument to train(). You can simply use preProcess
= "knnImpute" to change the method of imputation used prior to model fitting.

Exercise

breast_cancer_x and breast_cancer_y are loaded in your workspace.

• Use the train() function to fit a glm model called model2 to the breast cancer dataset.

• Use KNN imputation to handle missing values.
# Apply KNN imputation: model2
model2 <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "knnImpute"

)

Warning in train.default(x = breast_cancer_x, y = breast_cancer_y, method =
"glm", : The metric "Accuracy" was not in the result set. ROC will be used
instead.
# Print model to console
model2

Generalized Linear Model

699 samples
9 predictor
2 classes: 'benign', 'malignant'

Pre-processing: nearest neighbor imputation (9), centered (9), scaled (9)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 630, 629, 629, 629, 629, 629, ...
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Resampling results:

ROC Sens Spec
0.9901472 0.9715942 0.942

Compare KNN and median imputation

All of the preprocessing steps in the train() function happen in the training set of each cross-validation
fold, so the error metrics reported include the effects of the preprocessing.

This includes the imputation method used (e.g. knnImpute or medianImpute). This is useful because it
allows you to compare different methods of imputation and choose the one that performs the best out-of-
sample.

median_model and knn_model are available in your workspace, as is resamples, which contains the resampled
results of both models. Look at the results of the models by calling
dotplot(resamples, metric = "ROC")

and choose the one that performs the best out-of-sample. Which method of imputation yields the highest
out-of-sample ROC score for your glm model?
median_model <- model
knn_model <- model2
ANS <- resamples(list(median_model, knn_model))
dotplot(ANS, metric = "ROC")

Confidence Level: 0.95
ROC

Model2

Model1

0.985 0.990 0.995 1.000

• KNN imputation is much better than median imputation.

• KNN imputation is slightly better than median imputation.

• Median imputation is much better than KNN imputation.
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• Median imputation is slightly better than KNN imputation.

Order of operations

Which comes first in caret’s preProcess() function: median imputation or centering and scaling of variables?

• Median imputation comes before centering and scaling.

• Centering and scaling come before median imputation.

Note: Centering and scaling require data with no missing values.

5.3 Combining preprocessing methods

The preProcess argument to train() doesn’t just limit you to imputing missing values. It also includes a
wide variety of other preProcess techniques to make your life as a data scientist much easier. You can read
a full list of them by typing ?preProcess and reading the help page for this function.

One set of preprocessing functions that is particularly useful for fitting regression models is standardization:
centering and scaling. You first center by subtracting the mean of each column from each value in that
column, then you scale by dividing by the standard deviation.

Standardization transforms your data such that for each column, the mean is 0 and the standard deviation
is 1. This makes it easier for regression models to find a good solution.

Exercise

breast_cancer_x and breast_cancer_y are loaded in your workspace. Fit two models called model1 and
model2 to the breast cancer data, then print each to the console:

• A logistic regression model using only median imputation: model1
# Fit glm with median imputation: model1
model1 <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = "medianImpute"

)

Warning in train.default(x = breast_cancer_x, y = breast_cancer_y, method =
"glm", : The metric "Accuracy" was not in the result set. ROC will be used
instead.
# Print model1
model1

Generalized Linear Model

699 samples
9 predictor
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2 classes: 'benign', 'malignant'

Pre-processing: median imputation (9)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 629, 629, 628, 630, 629, 629, ...
Resampling results:

ROC Sens Spec
0.9916449 0.9694203 0.9458333

• A logistic regression model using median imputation, centering, and scaling (in that order): model2
# Fit glm with median imputation and standardization: model2
model2 <- train(
x = breast_cancer_x, y = breast_cancer_y,
method = "glm",
trControl = myControl,
preProcess = c("medianImpute", "center", "scale")

)

Warning in train.default(x = breast_cancer_x, y = breast_cancer_y, method =
"glm", : The metric "Accuracy" was not in the result set. ROC will be used
instead.
# Print model2
model2

Generalized Linear Model

699 samples
9 predictor
2 classes: 'benign', 'malignant'

Pre-processing: median imputation (9), centered (9), scaled (9)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 629, 629, 628, 630, 629, 629, ...
Resampling results:

ROC Sens Spec
0.9910757 0.969372 0.9418333

Why remove near zero variance predictors?

What’s the best reason to remove near zero variance predictors from your data before building a model?

• Because they are guaranteed to have no effect on your model.

• Because their p-values in a linear regression will always be low.

• To reduce model-fitting time without reducing model accuracy.

Note: Low variance variables are unlikely to have a large impact on our models.
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5.4 Remove near zero variance predictors

As you saw in the video, for the next set of exercises, you’ll be using the blood-brain dataset. This is a
biochemical dataset in which the task is to predict the following value for a set of biochemical compounds:
log((concentration of compound in brain) /

(concentration of compound in blood))

This gives a quantitative metric of the compound’s ability to cross the blood-brain barrier, and is useful for
understanding the biological properties of that barrier.

One interesting aspect of this dataset is that it contains many variables and many of these variables have
extremely low variances. This means that there is very little information in these variables because they
mostly consist of a single value (e.g. zero).

Fortunately, caret contains a utility function called nearZeroVar() for removing such variables to save time
during modeling.

nearZeroVar() takes in data x, then looks at the ratio of the most common value to the second most common
value, freqCut, and the percentage of distinct values out of the number of total samples, uniqueCut. By
default, caret uses freqCut = 19 and uniqueCut = 10, which is fairly conservative. I like to be a little more
aggressive and use freqCut = 2 and uniqueCut = 20 when calling nearZeroVar().

Exercise

bloodbrain_x and bloodbrain_y are loaded in your workspace.
url <- "https://assets.datacamp.com/production/course_1048/datasets/BloodBrain.RData"
download.file(url, "./Data/BloodBrain.RData")
load("./Data/BloodBrain.RData")

• Identify the near zero variance predictors by running nearZeroVar() on the blood-brain dataset. Store
the result as an object called remove_cols. Use freqCut = 2 and uniqueCut = 20 in the call to
nearZeroVar().

# Identify near zero variance predictors: remove
remove_cols <- nearZeroVar(bloodbrain_x, names = TRUE, freqCut = 2, uniqueCut = 20)

• Use names() to create a vector containing all column names of bloodbrain_x. Call this all_cols.
all_cols <- names(bloodbrain_x)

• Make a new data frame called bloodbrain_x_small with the near-zero variance variables removed. Use
setdiff() to isolate the column names that you wish to keep (i.e. that you don’t want to remove.)

# Remove from data: bloodbrain_x_small
bloodbrain_x_small <- bloodbrain_x[ , setdiff(all_cols, remove_cols)]

5.4.1 preProcess() and nearZeroVar()

Can you use the preProcess argument in caret to remove near-zero variance predictors? Or do you have
to do this by hand, prior to modeling, using the nearZeroVar() function?

• Yes! Set the preProcess argument equal to "nzv".
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• No, unfortunately. You have to do this by hand.

5.5 Fit model on reduced blood-brain data

Now that you’ve reduced your dataset, you can fit a glm model to it using the train() function. This model
will run faster than using the full dataset and will yield very similar predictive accuracy.

Furthermore, zero variance variables can cause problems with cross-validation (e.g. if one fold ends up with
only a single unique value for that variable), so removing them prior to modeling means you are less likely
to get errors during the fitting process.

Exercise

bloodbrain_x, bloodbrain_y, remove_cols, and bloodbrain_x_small are loaded in your workspace.

• Fit a glm model using the train() function and the reduced blood-brain dataset you created in the
previous exercise.

# Fit model on reduced data: model
model <- train(x = bloodbrain_x_small, y = bloodbrain_y, method = "glm")

• Print the result to the console.
# Print model to console
model

Generalized Linear Model

208 samples
112 predictors

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 208, 208, 208, 208, 208, 208, ...
Resampling results:

RMSE Rsquared MAE
1.640855 0.113519 1.104171

5.6 Using PCA as an alternative to nearZeroVar()

An alternative to removing low-variance predictors is to run PCA on your dataset. This is sometimes
preferable because it does not throw out all of your data: many different low variance predictors may end
up combined into one high variance PCA variable, which might have a positive impact on your model’s
accuracy.

This is an especially good trick for linear models: the pca option in the preProcess argument will center
and scale your data, combine low variance variables, and ensure that all of your predictors are orthogonal.
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This creates an ideal dataset for linear regression modeling, and can often improve the accuracy of your
models.

Exercise

bloodbrain_x and bloodbrain_y are loaded in your workspace.

• Fit a glm model to the full blood-brain dataset using the "pca" option to preProcess.
# Fit glm model using PCA: model
model <- train(
x = bloodbrain_x, y = bloodbrain_y,
method = "glm", preProcess = "pca"

)

• Print the model to the console and inspect the result.
# Print model to console
model

Generalized Linear Model

208 samples
132 predictors

Pre-processing: principal component signal extraction (132),
centered (132), scaled (132)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 208, 208, 208, 208, 208, 208, ...
Resampling results:

RMSE Rsquared MAE
0.6177954 0.4352449 0.4627265

Note that the PCA model’s accuracy is slightly higher than the nearZeroVar() model from the previous
exercise. PCA is generally a better method for handling low-information predictors than throwing them out
entirely.
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Chapter 6

Selecting models: a case study in
churn prediction

In the final chapter of this course, you’ll learn how to use resamples() to compare multiple models and
select (or ensemble) the best one(s).

Why reuse a trainControl?

Why reuse a trainControl?

• So you can use the same summaryFunction and tuning parameters for multiple models.

• So you don’t have to repeat code when fitting multiple models.

• So you can compare models on the exact same training and test data.

• All of the above.

6.1 Make custom train/test indices

As you saw in the video, for this chapter you will focus on a real-world dataset that brings together all of
the concepts discussed in the previous chapters.

The churn dataset contains data on a variety of telecom customers and the modeling challenge is to predict
which customers will cancel their service (or churn).

In this chapter, you will be exploring two different types of predictive models: glmnet and rf, so the first
order of business is to create a reusable trainControl object you can use to reliably compare them.

Exercise

churn_x and churn_y are loaded in your workspace.
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# library(C50)
# data(churn)
url <- "https://assets.datacamp.com/production/course_1048/datasets/Churn.RData"
download.file(url, "./Data/Churn.RData")
load("./Data/Churn.RData")

• Use createFolds() to create 5 CV folds on churn_y, your target variable for this exercise.
library(caret)
# Create custom indices: myFolds
myFolds <- createFolds(churn_y, k = 5)

• Pass them to trainControl() to create a reusable trainControl for comparing models.
# Create reusable trainControl object: myControl
myControl <- trainControl(
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = FALSE,
savePredictions = TRUE,
index = myFolds

)

glmnet as a baseline model

What makes glmnet a good baseline model?

• It’s simple, fast, and easy to interpret.

• It always gives poor predictions, so your other models will look good by comparison.

• Linear models with penalties on their coefficients always give better results.

6.2 Fit the baseline model

Now that you have a reusable trainControl object called myControl, you can start fitting different predictive
models to your churn dataset and evaluate their predictive accuracy.

You’ll start with one of my favorite models, glmnet, which penalizes linear and logistic regression models on
the size and number of coefficients to help prevent overfitting.

Exersize

Fit a glmnet model to the churn dataset called model_glmnet. Make sure to use myControl, which you
created in the first exercise and is available in your workspace, as the trainControl object.
# Fit glmnet model: model_glmnet
model_glmnet <- train(
x = churn_x, y = churn_y,
metric = "ROC",
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method = "glmnet",
trControl = myControl

)

Random forest drawback

What’s the drawback of using a random forest model for churn prediction?

• Tree-based models are usually less accurate than linear models.

• You no longer have model coefficients to help interpret the model.

• Nobody else uses random forests to predict churn.

Note: Random forests are a little bit harder to interpret than linear models, though it is still possible to
understand them.

6.3 Random forest with custom trainControl

Another one of my favorite models is the random forest, which combines an ensemble of non-linear decision
trees into a highly flexible (and usually quite accurate) model.

Rather than using the classic randomForest package, you’ll be using the ranger package, which is a re-
implementation of randomForest that produces almost the exact same results, but is faster, more stable,
and uses less memory. I highly recommend it as a starting point for random forest modeling in R.

Exercise

churn_x and churn_y are loaded in your workspace.

Fit a random forest model to the churn dataset. Be sure to use myControl as the trainControl like you’ve
done before and implement the "ranger" method.
# Fit random forest: model_rf
model_rf <- train(
x = churn_x, y = churn_y,
metric = "ROC",
method = "ranger",
trControl = myControl

)

Matching train/test indices

What’s the primary reason that train/test indices need to match when comparing two models?

• You can save a lot of time when fitting your models because you don’t have to remake the datasets.

• There’s no real reason; it just makes your plots look better.
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• Because otherwise you wouldn’t be doing a fair comparison of your models and your
results could be due to chance.

Note: Train/test indexes allow you to evaluate your models out of sample so you know that they work!

6.4 Create a resamples object

Now that you have fit two models to the churn dataset, it’s time to compare their out-of-sample predictions
and choose which one is the best model for your dataset.

You can compare models in caret using the resamples() function, provided they have the same training
data and use the same trainControl object with preset cross-validation folds. resamples() takes as input
a list of models and can be used to compare dozens of models at once (though in this case you are only
comparing two models).

Exercise

model_glmnet and model_rf are loaded in your workspace.

• Create a list() containing the glmnet model as item1 and the ranger model as item2.
# Create model_list
model_list <- list(glmnet = model_glmnet, rf = model_rf)

• Pass this list to the resamples() function and save the resulting object as ANS.
# Pass model_list to resamples(): ANS
ANS <- resamples(model_list)

• Summarize the results by calling summary() on ANS.
# Summarize the results
summary(ANS)

Call:
summary.resamples(object = ANS)

Models: glmnet, rf
Number of resamples: 5

ROC
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

glmnet 0.5422989 0.5485714 0.6301149 0.5996001 0.6315208 0.6454945 0
rf 0.5696552 0.6484306 0.6863736 0.6679428 0.7057143 0.7295402 0

Sens
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

glmnet 0.8793103 0.9080460 0.9428571 0.9357373 0.9657143 0.9827586 0
rf 0.8908046 0.9028571 0.9712644 0.9461215 0.9714286 0.9942529 0

Spec
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Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glmnet 0 0.1538462 0.1538462 0.1495385 0.16 0.2800000 0
rf 0 0.0800000 0.1538462 0.1643077 0.28 0.3076923 0

6.5 Create a box-and-whisker plot

caret provides a variety of methods to use for comparing models. All of these methods are based on the
resamples() function. My favorite is the box-and-whisker plot, which allows you to compare the distribution
of predictive accuracy (in this case AUC) for the two models.

In general, you want the model with the higher median AUC, as well as a smaller range between min and
max AUC.

You can make this plot using the bwplot() function, which makes a box and whisker plot of the model’s out
of sample scores. Box and whisker plots show the median of each distribution as a line and the interquartile
range of each distribution as a box around the median line. You can pass the metric = "ROC" argument to
the bwplot() function to show a plot of the model’s out-of-sample ROC scores and choose the model with
the highest median ROC.

If you do not specify a metric to plot, bwplot() will automatically plot 3 of them.

Exercise

Pass the ANS object to the bwplot() function to make a box-and-whisker plot. Look at the resulting plot
and note which model has the higher median ROC statistic. Be sure to specify which metric you want to
plot.
# Create bwplot
bwplot(ANS, metric = "ROC")

ROC

glmnet

rf

0.55 0.60 0.65 0.70
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6.6 Create a scatterplot

Another useful plot for comparing models is the scatterplot, also known as the xy-plot. This plot shows you
how similar the two models’ performances are on different folds.

It’s particularly useful for identifying if one model is consistently better than the other across all folds, or if
there are situations when the inferior model produces better predictions on a particular subset of the data.

6.6.1 Exercise

Pass the ANS object to the xyplot() function. Look at the resulting plot and note how similar the two
models’ predictions are (or are not) on the different folds. Be sure to specify which metric you want to plot.
# Create xyplot
xyplot(ANS, metric = "ROC")
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6.7 Ensembling models

That concludes the course! As a teaser for a future course on making ensembles of caret models, I’ll show
you how to fit a stacked ensemble of models using the caretEnsemble package.

caretEnsemble provides the caretList() function for creating multiple caret models at once on the same
dataset, using the same resampling folds. You can also create your own lists of caret models.
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In this exercise, I’ve made a caretList for you, containing the glmnet and ranger models you fit on the
churn dataset. Use the caretStack() function to make a stack of caret models, with the two sub-models
(glmnet and ranger) feeding into another (hopefully more accurate!) caret model.

Exercise

• Call the caretStack() function with two arguments, model_list and method = "glm", to ensemble
the two models using a logistic regression. Store the result as stack.

library(caretEnsemble)
models <- caretList(
x = churn_x, y = churn_y,
metric = "ROC",
trControl = myControl,
methodList = c("glmnet", "ranger")

)
# Create ensemble model: stack
stack <- caretStack(all.models = models, method = "glm")

• Summarize the resulting model with the summary() function.
summary(stack)

Call:
NULL

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1683 -0.4982 -0.4446 -0.4202 2.2508

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3877 0.1312 -18.196 < 2e-16 ***
glmnet -0.6164 0.5115 -1.205 0.228
ranger 3.4854 0.6752 5.162 2.45e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 765.13 on 999 degrees of freedom
Residual deviance: 727.72 on 997 degrees of freedom
AIC: 733.72

Number of Fisher Scoring iterations: 4
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