
The Saddle Surface

Audrey Holloman

Abstract

The saddle surface holds the overall basis for many surfaces of
negative Gaussian curvature. This makes understanding the basic
differential geometry properties of a saddle an important key in order
to continue on to understand how other similar surfaces work. With
saddles being so well known, there is much recent work and research
that involves using them to explore other properties related to real-life
applications. In order to understand how the differential geometry of
saddles is described in this research, one must first comprehend the
prior basic understanding of where saddles come from and how they
function.
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1 Introduction and Prior Experience

Nearly everyone knows what a saddle is. Whether you study mathematics
or not, almost everyone can picture what a saddle looks like. The Pringles
potato chip or crisp is an everyday example of what a basic saddle may
look like. However, most of those who teach or study mathematics know
that a saddle is a generalization of a surface of negative curvature. A sur-
face of negative curvature is a two-dimensional surface in three-dimensional
Euclidean space that has negative Gaussian Curvature k<0 at every point.
The concept of a surface of negative curvature can be generalized, for exam-
ple, with respect to the dimension of the surface itself or the dimension and
structure of the ambient space. Surfaces of negative curvature locally have
a saddle-like structure. This means that in a sufficiently small neighborhood
of any of its points, a surface of negative curvature resembles a saddle [5]. A
surface is called a saddle surface if it is impossible to cut off a crust by any
plane. Examples of a saddle surface are a one-sheet hyperboloid, a hyper-
bolic paraboloid, and a ruled surface. For a twice continuously-differentiable
surface to be a saddle surface, it is necessary and sufficient that at each point
of the surface its Gaussian curvature is non-positive. A surface for which all
points are saddle points is a saddle surface. A saddle surface that is bounded
by a rectifiable contour is, with respect to its intrinsic metric induced by the
metric of the space, a two-dimensional manifold of non-positive curvature.
A number of properties of surfaces of negative curvature can be generalized
to the class of saddle surfaces, but it seems that these surfaces do not form
such a natural class of surfaces as do convex surfaces [5].This made selecting
a saddle as a capstone topic an excellent choice.

This unique quality of the saddle surface having negative Gaussian curva-
ture is what makes a saddle so distinguishable. In some ways, one could look
at a surface that has negative Gaussian curvature almost as a type of saddle
since saddle surfaces hold the overall basis for having this negative curvature.
This made the saddle interesting because in some aspects it holds as the orig-
inal or elementary surface. For example, Enneper’s surface may look like a
saddle over certain parameters, however, looking at the matrix of the first
fundamental form shows otherwise. Having this negative Gaussian curva-
ture separates the saddle from convex/elliptical surfaces which have positive
Gaussian curvature [5]. The saddle surface has applications in many fields
of mathematics. Since there are a lot of different uses to saddles other than
just in differential geometry, it’s characteristics are often taught to students
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Figure 1: A saddle surface

in introductory level courses.

1.1 MAT 2240: Introduction to Linear Algebra

In MAT 2240:Introduction to Linear Algebra we learned the basics behind
eigenvalues and how certain ones can relate to saddle points. The definitive
statement for eigenvalues and eigenvectors is as follows.

Let A ∈ Cnxn. Suppose that Ax = λx for some scalar λ ∈ C and nonzero
vector x ∈ Cn.Then λ is called an eigenvalue of A, and x is called an eigen-
vector of A associated with λ. Below is an example of the definition just
stated. [

1 0
0 3

]
︸ ︷︷ ︸

A

[
1
0

]
︸︷︷︸
x1

= 1︸︷︷︸
λ1

[
1
0

]
︸︷︷︸
x1

and

[
1 0
0 3

]
︸ ︷︷ ︸

A

[
0
1

]
︸︷︷︸
x2

= 3︸︷︷︸
λ2

[
0
1

]
︸︷︷︸
x2

λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =

[
1
0

]
, x2 =

[
0
1

]
are eigenvectors associated with λ1, λ2.

This is meaningful because a critical point is a saddle point if the charac-
teristic equation from a matrix has one positive and one negative eigenvalue.
Having two eigenvalues of opposite signs results in a negative Gaussian cur-
vature when they are multiplies which yields a saddle point. At such points,
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the surface will be saddle shaped. Which leads to the understanding that
there can be more than one saddle point on a saddle surface but the main
saddle point is the one that makes the basis shape of the saddle surface itself.

1.2 MAT 2130: Calculus With Analytic Geometry III

In MAT 2130: Calculus with Analytical Geometry III we examined and an-
alyzed relative maximums and minimums relating to critical points that ex-
hibit the behavior of saddle points. In order to explain what qualities of a
critical point determines a saddle point, one must first understand what a
critical point is. The point (a,b) is a critical point of f(x,y) provided one of
the following is true,

1. ∇f(a,b) = ~0,
2. fx(a, b) and/or fy(a, b) doesn’t exist.
Now, suppose that (a,b) is a critical point of f(x,y) and that the second

derivatives are continuous in some region that contains (a,b). Next, define D
= D(a,b) = fxx(a,b)fyy(a,b) - [fxy(a,b)]2. We then have certain classifications
of the critical point. The only classifications that pertain to having a saddle
point at the point (a,b) are if D<0 or if D = 0. However, if D = 0 the point
(a,b) may be a relative minimum, relative maximum, or a saddle point.
Which means other techniques would need to be used to classify the critical
point.

1.3 MAT 3130: Introduction to Differential Equations

In MAT 3130: Introduction to Differential Equations we explored real and
distinct eigenvalues relating to a critical point being either a node or a saddle.
We also looked at unstable saddle points in slope fields.

Given a general homogeneous system, ~xt = A~x, notice that ~x = 0 is a
solution to the system of differential equations. In the case of being restricted
down to the 2 x 2 case, the system will have the form,

~xt1 = ac1 + bx2
~xt2 = cx1 + dx2

⇒ ~xt =

[
a b
c d

]
~x

Solutions to this system will be of the form,

~x =

[
x1(t)
x2(t)

]
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and the equilibrium solution will be,

~x =

[
0
0

]
When these points are plotted, after thinking of the solutions to the system
as points in the x1-x2 plane, the equilibrium solution will correspond to the
origin of the x1-x2 plane and this plane is called the phase plane. Plugging
chosen values of t into the solution yields a sketch to the solution in the phase
plane. This is called the trajectory of the solution. Looking at whether or
not the solution will approach the equilibrium solution as t increases paints
a better picture of what is going on.

Figure 2: Phase plane of a saddle point

Figure 2 above, displays a sketch of the phase portrait of a saddle where
most of the solutions start away from the equilibrium solution then as t
starts to increase they move in towards the equilibrium solution and then
eventually start moving away from the equilibrium solution again. In these
kinds of cases, the equilibrium point is called a saddle point which is unstable
since all but two of the solutions are moving away from it as t increases.

2 Historical Connections and Applications

The geometry of a saddle surface is similar to hyperbolic plane geometry,
which are surfaces with a constant negative Gaussian curvature. A modern
use of this hyperbolic geometry is in the theory of special relativity, particu-
larly Minkowski spacetime and gyrovector space. However, when geometers
first realized they were working with something other than the standard Eu-
clidean geometry, they described their geometry under many different names.
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Felix Klein finally gave the subject the name ‘hyperbolic geometry’ to include
it in spherical geometry, Euclidean geometry, and hyperbolic geometry [4].
More prior progress includes Grigori Yakovlevich Perelman defending his the-
sis Saddle Surfaces in Euclidean Spaces in 1990 [1]. He had already published
one of the main results of the thesis in An example of a complete saddle sur-
face in R4 with Gaussian curvature bounded away from zero (Russian)(1989).

In a more recent study of connecting saddle surfaces to real life appli-
cations, Silvia Bonfanti and Walter Kob published a journal in 2017 about
methods to locate saddle points in complex landscapes [2]. They offer three
main approaches to find such saddle points. In the case that one knows two
neighboring minima, one can use simple and efficient algorithms that can
find the corresponding saddle point with a numerical approach. The second
approach involves only one starting minimum and uses the geometrical infor-
mation from the potential energy landscape to climb up the landscape until
a saddle point is found. The last approach considers the squared gradient of
the potential energy since at a saddle point ∇V = 0, a minimization of the
squared gradient of the potential energy will lead to a saddle point or local
minimum.

3 Differential Geometry of Saddles

The basic parametrization of a saddle surface is ~x(u,v)=(u,v,uv). A saddle
surface has geodesics that consist of the cross section in the middle of the
surface passing through the saddle point.

Figure 3: Geodesics on a saddle surface

It makes sense that they must nicely bisect through the saddle point
because at a saddle the point the surface is saddle shaped. This leads to the
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fact that the saddle point is the most interesting point on a saddle. This point
is typically at the origin of the surface which would be ~x(u,v)=(0,0,0). As
said before, there is negative Gaussian curvature everywhere, which includes
the saddle point. Gaussian curvature determines the deviance o fa surface
from being a plane at each point. This curvature for a saddle is of the form
K= −1

(1+u2+v2)2
. This is because one of the principal curvatures is negative

and the other is positive, so when they are multiplied they yield a negative
Gaussian curvature. The main thing to know about having negative Gaussian
curvature is that one piece of the tangent plane goes up while the other is
directed down, so the surface lies on both sides of the tangent plane.

After obtaining E,F, and G from the first fundamental form, the metric
form comes out to be (ds

dt
)2=(v2+1)(du

dt
)2+(2uv)(du

dt
)(dv
dt

)+(u2+1)(dv
dt

)2. This
metric form shows that the Pythagorean theorem does not hold because there
is a nonzero F. The only way for F to be zero would if u∪v=0, and this cannot
happen because then the parametrization would not be a saddle.

The rate of change of the surface normal is not a multiple of ~xu or ~xv
individually but can be a multiple by combining the two. The reason indi-
vidual multiples of ~xu and ~xv can’t be obtained is because they both have
zero components where ~xu=(1,0,v) and ~xv=(0,1,u). Therefore, there is an
algebraic congruence but not an isometric one. So the covariant derivatives
and shape operator would include:

S(~xu)=aUu+bUv,
S(~xv)=cUu+dUv

where a,b,c, and d are multiples.

4 Conclusion

The saddle surface is the overall basis of having negative curvature. This
can lead to other surfaces being isometric to a saddle in different ways. For
example, Enneper’s surface is locally isometric but not globally. They look
as if they are the same surface when viewed at certain parameters, however,
after comparing their metric forms it becomes clear that they are not globally
isometric.

If there’s one thing to remember about the saddle surface it’s the fact
that it has negative Gaussian curvature. Through prior classes taken, such
as Introduction to Linear Algebra, Calculus with Analytic Geometry III, and
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Introduction to Differential Equations, understanding the topics in Differen-
tial Geometry pertaining to having this negative curvature were made a lot
easier. After being able to understand the differential geometry behind sad-
dles, finding current and intriguing research involving saddles became even
more fascinating. If there had been more time, researching on how saddle
surfaces are incorporated into general relativity would have been interesting
to look into in more depth.
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